• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于层间模型知识迁移的深度堆叠最小二乘分类器

冯伟, 杭文龙, 梁爽, 刘学军, 王辉

冯伟, 杭文龙, 梁爽, 刘学军, 王辉. 基于层间模型知识迁移的深度堆叠最小二乘分类器[J]. 计算机研究与发展, 2019, 56(12): 2589-2599. DOI: 10.7544/issn1000-1239.2019.20180741
引用本文: 冯伟, 杭文龙, 梁爽, 刘学军, 王辉. 基于层间模型知识迁移的深度堆叠最小二乘分类器[J]. 计算机研究与发展, 2019, 56(12): 2589-2599. DOI: 10.7544/issn1000-1239.2019.20180741
Feng Wei, Hang Wenlong, Liang Shuang, Liu Xuejun, Wang Hui. Deep Stack Least Square Classifier with Inter-Layer Model Knowledge Transfer[J]. Journal of Computer Research and Development, 2019, 56(12): 2589-2599. DOI: 10.7544/issn1000-1239.2019.20180741
Citation: Feng Wei, Hang Wenlong, Liang Shuang, Liu Xuejun, Wang Hui. Deep Stack Least Square Classifier with Inter-Layer Model Knowledge Transfer[J]. Journal of Computer Research and Development, 2019, 56(12): 2589-2599. DOI: 10.7544/issn1000-1239.2019.20180741
冯伟, 杭文龙, 梁爽, 刘学军, 王辉. 基于层间模型知识迁移的深度堆叠最小二乘分类器[J]. 计算机研究与发展, 2019, 56(12): 2589-2599. CSTR: 32373.14.issn1000-1239.2019.20180741
引用本文: 冯伟, 杭文龙, 梁爽, 刘学军, 王辉. 基于层间模型知识迁移的深度堆叠最小二乘分类器[J]. 计算机研究与发展, 2019, 56(12): 2589-2599. CSTR: 32373.14.issn1000-1239.2019.20180741
Feng Wei, Hang Wenlong, Liang Shuang, Liu Xuejun, Wang Hui. Deep Stack Least Square Classifier with Inter-Layer Model Knowledge Transfer[J]. Journal of Computer Research and Development, 2019, 56(12): 2589-2599. CSTR: 32373.14.issn1000-1239.2019.20180741
Citation: Feng Wei, Hang Wenlong, Liang Shuang, Liu Xuejun, Wang Hui. Deep Stack Least Square Classifier with Inter-Layer Model Knowledge Transfer[J]. Journal of Computer Research and Development, 2019, 56(12): 2589-2599. CSTR: 32373.14.issn1000-1239.2019.20180741

基于层间模型知识迁移的深度堆叠最小二乘分类器

基金项目: 国家自然科学基金项目(61802177);江苏省高校自然科学基金研究面上项目(18KJB520020);南京工业大学引进人才启动项目(3827401749);江苏省重点研发计划项目(BE2015697)
详细信息
  • 中图分类号: TP391; TP18

Deep Stack Least Square Classifier with Inter-Layer Model Knowledge Transfer

  • 摘要: 经典的最小二乘分类器(least square classifier, LSC)由于其简洁、有效性已早被广泛应用于图像识别、语音识别等领域.然而,利用原始数据特征构建的最小二乘分类器,其泛化性能往往较差.为解决上述问题,提出了基于深度堆叠泛化和迁移学习机制的深度迁移最小二乘分类器(deep transfer least square classifier, DTLSC).首先,基于堆叠泛化原理,利用LSC模型作为基本堆叠单元构建深度堆叠网络,避免了传统深度网络中需要求解非凸优化的问题,提升模型分类性能的同时提高了网络计算效率.其次,基于迁移学习机制,利用前层单元中的模型知识辅助当前层的模型构建,尽可能保持了层间模型的一致性,提升了模型泛化性能.在此基础上,引入自适应迁移策略,有选择地利用前层模型知识,缓解了利用前层不相关模型知识而导致的负迁移效应.在人造数据集及真实数据集上,实验结果验证了所提DTLSC算法的有效性.
    Abstract: The traditional least square classifier (LSC) has been widely used in image recognition, speech recognition and other fields due to its simplicity and effectiveness. However, the traditional LSC may suffer from the weak generalization capacity when taking the natural data in their raw form as the input. In order to overcome this problem, a deep transfer least square classifier (DTLSC) is proposed on the basis of the stack generalization philosophy and the transfer learning mechanism. Firstly, following the stack generalization philosophy, DTLSC adopts LSC as the basic stacking unit to construct a deep stacking network, which avoids solving the non-convex optimization problem existing in traditional deep networks. Thus, the classification performance and the computational efficiency of the proposed network are improved. Secondly, transfer learning mechanism is used to leverage the model knowledge of the previous layers to help construction the model of the current layer such that the consistency of the inter-layer model is guaranteed. Thus, the generalization performance of the proposed DTLSC is further improved. In addition, the adaptive transfer learning strategy is introduced to selectively use the model knowledge of the previous layers, which alleviates the negative transfer effect by rejecting the uncorrelated model knowledge of the previous layer. Experimental results on synthetic datasets and real world datasets show the effectiveness of the proposed DTLSC.
  • 期刊类型引用(11)

    1. 肖宇庭,吕晓琪,谷宇,刘传强. 基于拆分残差网络的糖尿病视网膜病变分类. 广西师范大学学报(自然科学版). 2024(01): 91-101 . 百度学术
    2. 吕德珍,赵玉,苗素琴. 基于分布式多节点医疗管理系统进程设计. 计算机与数字工程. 2024(02): 382-387 . 百度学术
    3. 盛文娟,赖振谱,杨宁,Peng Gangding. 基于改进AdaBoost算法的可调谐F-P滤波器温漂补偿方法. 光学学报. 2023(03): 48-56 . 百度学术
    4. 傅懋钟,胡海洋,李忠金. 面向GPU集群的动态资源调度方法. 计算机研究与发展. 2023(06): 1308-1321 . 本站查看
    5. 杨小琴,朱玉全. 基于距离限定优化的多姿态人脸图像智能识别. 计算机仿真. 2022(01): 200-203+282 . 百度学术
    6. 王昕. 梯度下降及优化算法研究综述. 电脑知识与技术. 2022(08): 71-73 . 百度学术
    7. 赵永亮,于倩,邓博,韩丽君,高红梅. 基于博弈论及机器学习的最优化算法设计与仿真. 电子设计工程. 2022(13): 23-27 . 百度学术
    8. 李晓锋,燕少飞,吴宸. 移动终端操作系统应用程序恶意检测系统技术研究. 电子技术与软件工程. 2022(17): 75-79 . 百度学术
    9. 蒋平. 基于卷积神经网络的图像精度深度优化. 淮阴工学院学报. 2021(03): 30-34 . 百度学术
    10. 杨国葳,李宏坤,张明亮,黄刚劲. 基于一维深度卷积自动编码器的刀具状态监测方法. 振动与冲击. 2021(21): 223-233+274 . 百度学术
    11. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 . 百度学术

    其他类型引用(24)

计量
  • 文章访问数:  1134
  • HTML全文浏览量:  1
  • PDF下载量:  295
  • 被引次数: 35
出版历程
  • 发布日期:  2019-11-30

目录

    /

    返回文章
    返回