• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

机会移动社交网络中基于群组构造的数据分发机制

李婕, 洪韬, 王兴伟, 黄敏, 郭静

李婕, 洪韬, 王兴伟, 黄敏, 郭静. 机会移动社交网络中基于群组构造的数据分发机制[J]. 计算机研究与发展, 2019, 56(11): 2494-2505. DOI: 10.7544/issn1000-1239.2019.20180750
引用本文: 李婕, 洪韬, 王兴伟, 黄敏, 郭静. 机会移动社交网络中基于群组构造的数据分发机制[J]. 计算机研究与发展, 2019, 56(11): 2494-2505. DOI: 10.7544/issn1000-1239.2019.20180750
Li Jie, Hong Tao, Wang Xingwei, Huang Min, Guo Jing. A Data Dissemination Mechanism Based on Group Structure in Opportunistic Mobile Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2494-2505. DOI: 10.7544/issn1000-1239.2019.20180750
Citation: Li Jie, Hong Tao, Wang Xingwei, Huang Min, Guo Jing. A Data Dissemination Mechanism Based on Group Structure in Opportunistic Mobile Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2494-2505. DOI: 10.7544/issn1000-1239.2019.20180750
李婕, 洪韬, 王兴伟, 黄敏, 郭静. 机会移动社交网络中基于群组构造的数据分发机制[J]. 计算机研究与发展, 2019, 56(11): 2494-2505. CSTR: 32373.14.issn1000-1239.2019.20180750
引用本文: 李婕, 洪韬, 王兴伟, 黄敏, 郭静. 机会移动社交网络中基于群组构造的数据分发机制[J]. 计算机研究与发展, 2019, 56(11): 2494-2505. CSTR: 32373.14.issn1000-1239.2019.20180750
Li Jie, Hong Tao, Wang Xingwei, Huang Min, Guo Jing. A Data Dissemination Mechanism Based on Group Structure in Opportunistic Mobile Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2494-2505. CSTR: 32373.14.issn1000-1239.2019.20180750
Citation: Li Jie, Hong Tao, Wang Xingwei, Huang Min, Guo Jing. A Data Dissemination Mechanism Based on Group Structure in Opportunistic Mobile Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2494-2505. CSTR: 32373.14.issn1000-1239.2019.20180750

机会移动社交网络中基于群组构造的数据分发机制

基金项目: 国家自然科学基金项目(61502092,61872073);辽宁省高校创新团队支持计划资助项目(LT2016007);中央高校基本科研业务费专项资金项目(N171604016,N180101028);中国博士后科学基金项目(2016M591449)
详细信息
  • 中图分类号: TP393

A Data Dissemination Mechanism Based on Group Structure in Opportunistic Mobile Social Networks

  • 摘要: 机会移动社交网络(opportunistic mobile social networks, OMSNs)是一种利用节点的相遇机会进行端到端无线数据传输的网络.随着人们使用移动智能终端数量的剧增,为建立泛在的数据传输基础设施提供了机会,因此研究机会移动社交网络的数据传输机制具有重要意义.为了提高机会移动社交网络的数据传输性能,提出了一种基于群组构造的数据分发机制(data dissemination mechanism based on group structure, DDMGS).首先,基于用户的行为属性,即节点重要性、兴趣相似度和通信关系紧密度,设计关系度量模型.其次,依据不同的行为属性关系构成的网络拓扑特征设计群组构造算法:基于位置关系的拓扑结构具有周期稳定性,基于兴趣关系的拓扑结构具有长期稳定性,而基于通信关系的拓扑结构具有动态性.为进一步提高数据分发性能和网络的整体性能,还设计了节点缓冲区管理机制,引入了合作博弈理论加强节点之间的合作能力,规避节点的自私行为.仿真验证表明DDMGS与直接投递路由、先知路由以及Simbet路由和Epidemic路由相比具有较好的性能,提高了消息传输成功率,减少了平均跳数,该算法是可行的.
    Abstract: Opportunistic mobile social networks (OMSNs) are the network where mobile users utilize opportunistic contacts to transmit data by wireless peer-to-peer interaction. The growing share of using smart mobile devices offers the opportunity to build a ubiquitous infrastructure for data disseminations, so it is significant to study data transmissions in OMSNs. In order to improve the data dissemination performance of OMSNs, a data dissemination mechanism based on group structure (DDMGS) is proposed in this paper. Firstly, the relationship measurement model is designed based on the user’s behavior attributes that include the user’s movement trajectories, interests and communication behaviors. In addition, the group construction algorithm is designed for network topology composed of different behavior attribute relations. The topological structure based on location relationship has periodic stability. The topological structure based on interest relationship has long-term stability. The topological structure based on communication relationship has dynamicity. In order to improve the data dissemination performance and the overall network performance, a buffer management scheme is designed, and a cooperative game theory is introduced to strengthen the cooperation between nodes, to avoid the selfish behavior of the node. Simulation results show that, compared with the performance of direct delivery routing, prophetic routing, Simbet routing and Epidex routing, DDMGS has better performance in success rate of message transmission and the average hop count. It demonstrates that DDMGS is feasible and effective.
  • 期刊类型引用(7)

    1. 姜磊,章小卫. 基于模糊隶属度邻域覆盖的三支分类决策. 计算机应用与软件. 2024(02): 271-278 . 百度学术
    2. 骆公志,张尚蕾. 基于正区域和投票式属性重要度的特征提取算法. 南京邮电大学学报(自然科学版). 2024(01): 79-89 . 百度学术
    3. 王笑笑,巴婧,陈建军,宋晶晶,杨习贝. 超约简求解:效率与性能的提升. 计算机科学. 2023(02): 166-172 . 百度学术
    4. 刘长顺,刘炎,宋晶晶,徐泰华. 基于论域离散度的属性约简算法. 山东大学学报(理学版). 2023(05): 26-35+52 . 百度学术
    5. 张清华,艾志华,张金镇. 融合密度与邻域覆盖约简的分类方法. 陕西师范大学学报(自然科学版). 2022(03): 33-42 . 百度学术
    6. 沈毅波. RBF神经网络在关联数据一致性挖掘中的应用. 福建电脑. 2022(08): 5-9 . 百度学术
    7. 周长顺,徐久成,瞿康林,申凯丽,章磊. 一种基于改进邻域粗糙集中属性重要度的快速属性约简方法. 西北大学学报(自然科学版). 2022(05): 745-752 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1014
  • HTML全文浏览量:  0
  • PDF下载量:  451
  • 被引次数: 14
出版历程
  • 发布日期:  2019-10-31

目录

    /

    返回文章
    返回