• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

多媒体内容理解的研究现状与展望

彭宇新, 綦金玮, 黄鑫

彭宇新, 綦金玮, 黄鑫. 多媒体内容理解的研究现状与展望[J]. 计算机研究与发展, 2019, 56(1): 183-208. DOI: 10.7544/issn1000-1239.2019.20180770
引用本文: 彭宇新, 綦金玮, 黄鑫. 多媒体内容理解的研究现状与展望[J]. 计算机研究与发展, 2019, 56(1): 183-208. DOI: 10.7544/issn1000-1239.2019.20180770
Peng Yuxin, Qi Jinwei, Huang Xin. Current Research Status and Prospects on Multimedia Content Understanding[J]. Journal of Computer Research and Development, 2019, 56(1): 183-208. DOI: 10.7544/issn1000-1239.2019.20180770
Citation: Peng Yuxin, Qi Jinwei, Huang Xin. Current Research Status and Prospects on Multimedia Content Understanding[J]. Journal of Computer Research and Development, 2019, 56(1): 183-208. DOI: 10.7544/issn1000-1239.2019.20180770
彭宇新, 綦金玮, 黄鑫. 多媒体内容理解的研究现状与展望[J]. 计算机研究与发展, 2019, 56(1): 183-208. CSTR: 32373.14.issn1000-1239.2019.20180770
引用本文: 彭宇新, 綦金玮, 黄鑫. 多媒体内容理解的研究现状与展望[J]. 计算机研究与发展, 2019, 56(1): 183-208. CSTR: 32373.14.issn1000-1239.2019.20180770
Peng Yuxin, Qi Jinwei, Huang Xin. Current Research Status and Prospects on Multimedia Content Understanding[J]. Journal of Computer Research and Development, 2019, 56(1): 183-208. CSTR: 32373.14.issn1000-1239.2019.20180770
Citation: Peng Yuxin, Qi Jinwei, Huang Xin. Current Research Status and Prospects on Multimedia Content Understanding[J]. Journal of Computer Research and Development, 2019, 56(1): 183-208. CSTR: 32373.14.issn1000-1239.2019.20180770

多媒体内容理解的研究现状与展望

基金项目: 国家自然科学基金项目(61771025,61532005)
详细信息
  • 中图分类号: TP391

Current Research Status and Prospects on Multimedia Content Understanding

  • 摘要: 随着多媒体和网络技术的迅猛发展,海量的图像、视频、文本、音频等多媒体数据快速涌现.这些不同媒体的数据在形式上多源异构,语义上相互关联.认知科学研究表明,人脑生理组织结构决定了其对外界的感知和认知过程是跨越多种感官信息的融合处理.如何对不同媒体的数据进行语义分析和关联建模以实现多媒体内容理解,成为了一个研究和应用的关键问题,受到了学术界和工业界的广泛关注.选取了多媒体内容理解的5个最新热点研究方向:图像细分类与检索、视频分类与目标检测、跨媒体检索、视觉描述与生成、视觉问答,分别阐述了它们的基本概念、代表性方法、研究现状等,并进一步阐述了多媒体内容理解面临的重要挑战,同时给出未来的发展趋势,旨在帮助读者全面了解多媒体内容理解的研究现状,吸引更多研究人员投身相关研究并为他们提供技术参考,推动该领域的进一步发展.
    Abstract: With the rapid development of multimedia and Internet technologies, a large amount of multimedia data has been rapidly emerging, such as image, video, text and audio. Data of different media types from multi-source is heterogeneous in the form but relevant in the semantic. As indicated in the research of cognitive science, the perception and cognition of the environment is through the fusion across different sensory organs of human, which is decided by the human brain’s organization structure. Therefore, it has been a key challenge to perform data semantic analysis and correlation modeling across different media types, for achieving comprehensive multimedia content understanding, which has drawn wide interests of both academic and industrial areas. In this paper, the basic concepts, representative methods and research status of 5 latest highlighting research topics of multimedia content understanding are referred, including fine-grained image classification and retrieval, video classification and object detection, cross-media retrieval, visual description and generation, and visual question answering. This paper further presents the major challenges of multimedia content understanding, as well as gives the development trend in the future. The goal of this paper is to help readers get a comprehensive understanding on the research status of multimedia content understanding, draw more attention of researchers to relevant research topics, and provide the technical insights to promote further development of this area.
  • 期刊类型引用(9)

    1. 李振华,王泓懿,李洋,林灏,杨昕磊. 大规模复杂终端网络的云原生强化设计. 计算机研究与发展. 2024(01): 2-19 . 本站查看
    2. 赵旭康,刘晓锋,徐洁. 融合多样频度与分布差异的Android恶意软件检测. 计算机工程与设计. 2024(02): 390-395 . 百度学术
    3. 方加娟,丁乙恒. 基于关联规则的Android恶意软件检测技术. 电脑与信息技术. 2024(03): 115-118 . 百度学术
    4. 陈志强,韩萌,武红鑫,李慕航,张喜龙. 分段加权的概念漂移检测方法. 计算机应用. 2023(03): 776-784 . 百度学术
    5. 李汇来,杨斌,于秀丽,唐晓梅. 软件缺陷预测模型可解释性对比. 计算机科学. 2023(05): 21-30 . 百度学术
    6. 潘建文,崔展齐,林高毅,陈翔,郑丽伟. Android恶意应用的静态检测方法综述. 计算机研究与发展. 2023(08): 1875-1894 . 本站查看
    7. 殷建艳. 面向云数据库的Android应用风险评估方法. 信息与电脑(理论版). 2023(17): 177-179 . 百度学术
    8. 张皓. 基于深度学习的恶意软件动态检测方法研究. 电子技术与软件工程. 2022(03): 43-46 . 百度学术
    9. 刘光源. 基于DoI-RNNs模型的恶意软件动态检测方法. 信息与电脑(理论版). 2022(23): 38-40 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  2404
  • HTML全文浏览量:  11
  • PDF下载量:  1279
  • 被引次数: 15
出版历程
  • 发布日期:  2018-12-31

目录

    /

    返回文章
    返回