Predicted Results Evaluation and Query Verification of Drug-Target Interaction
-
摘要: 药物靶标作用关系预测是一种重要的辅助药物研发手段,而生物实验验证药物靶标作用关系耗钱耗时,因此,在数据库中查询验证预测的药物靶标作用关系是对预测方法的重要评价.基于KEGG,DrugBank,ChEMBL这3个数据库,利用爬虫获取信息的方式设计开发了药物靶标作用关系查询验证方法DTcheck(drug-target check),实现了对于提供KEGG DRUG ID及KEGG GENES ID的药物靶标对的高效查询验证功能,并利用DTcheck分别为Enzyme,IC(ion channel),GPCR(G-protein-coupled receptor),NR(nuclear receptor)四个标准数据集扩充新增药物靶标作用关系907,766,458,40对.此外,结合DTcheck查询验证,以BLM(bipartite local models)方法为例分析了预测结果的评价问题,结果表明,采用AUC(area under curve)值评价药物靶标作用关系预测方法没有Top N评价合理,且AUC值低的BLMd方法在预测新的药物靶标作用关系时优于AUC值高的BLMmax方法.
-
关键词:
- 药物靶标作用关系预测 /
- 查询验证 /
- 药物靶标数据集 /
- AUC评价 /
- Top N评价
Abstract: The drug-target interaction prediction is one of the important assistant approaches in drug discovery and design, however, experimental identification and validation of potential drug-target encoded by the human genome is both costly and time-consuming. Therefore, querying and validating the predicted drug-target interaction in databases is an important assessment of prediction methods. In this paper, the query and validation method of drug-target interaction named as DTcheck (drug-target check) is developed and designed with Web spider based on KEGG, DrugBank, ChEMBL databases, which realizes efficient query and validation function for drug-target pair providing both KEGG DRUG ID and KEGG GENES ID. ID mapping function is also designed in DTcheck, which can map Uniprot ID from DrugBank and ChEMBL into KEGG GENE ID. DTcheck expands 907, 766, 458, 40 pairs of new drug-target interaction for Enzyme, IC (ion channel), GPCR (G-protein-coupled receptor), NR (nuclear receptor) standard datasets, respectively. Moreover, combined with query and validation result, the analysis of the prediction results of the BLM (bipartite local models) method shows that evaluation of Top N is more reasonable than AUC (area under curve) value for the prediction method of drug-target interaction. It also shows that the BLMd method with low AUC value is superior to the BLMmax method with high AUC value in predicting the drug-target interaction. -
-
期刊类型引用(28)
1. 李东亚,白涛,香慧敏,戴硕,王震鲁,陈珍. 基于RoBERTa多特征融合的棉花病虫害命名实体识别. 河南农业科学. 2024(02): 152-161 . 百度学术
2. 阮光册,钟静涵,张祎笛. 基于深度学习的术语识别研究综述. 数据分析与知识发现. 2024(04): 64-75 . 百度学术
3. 王颖洁,张程烨,白凤波,汪祖民. 基于Transformer的司法文书命名实体识别方法. 计算机科学. 2024(S1): 125-133 . 百度学术
4. 梁宏涛,刘雨婷,李帅,高大唤,朱洁. 多策略黏菌算法优化BiLSTM的命名实体识别研究. 中文信息学报. 2024(07): 51-62 . 百度学术
5. 王颖洁,张程烨,白凤波,汪祖民,季长清. 中文命名实体识别研究综述. 计算机科学与探索. 2023(02): 324-341 . 百度学术
6. 毛亮,赵林均,余敦辉,孙斌. 基于知识蒸馏的企业命名实体识别模型. 计算机工程. 2023(05): 90-96 . 百度学术
7. 王馨瑢,胡金南. 人文社科专题文献命名实体识别. 数字技术与应用. 2023(07): 97-100 . 百度学术
8. 喻金平,朱伟锋,廖列法. 基于RoBERTa-wwm-BiLSTM-CRF的扶持政策文本实体识别研究. 计算机工程与科学. 2023(08): 1498-1507 . 百度学术
9. 张文韩,刘小明,杨关,刘杰. 多层结构化语义知识增强的跨领域命名实体识别. 计算机研究与发展. 2023(12): 2864-2876 . 本站查看
10. 马玉凤,向南,豆亚杰,姜江,杨克巍,谭跃进. 军事系统工程中的知识图谱应用及研究. 系统工程与电子技术. 2022(01): 146-153 . 百度学术
11. 张毅,王爽胜,何彬,叶培明,李克强. 基于BERT的初等数学文本命名实体识别方法. 计算机应用. 2022(02): 433-439 . 百度学术
12. 李攀锋,陈樱珏,钟泠韵,林锋. 基于多粒度认知的命名实体识别方法. 四川大学学报(自然科学版). 2022(02): 64-70 . 百度学术
13. 杨璐,张恬,郑丽敏,田立军. 兽药致病命名实体Att-Aux-BERT-BiLSTM-CRF识别. 农业机械学报. 2022(03): 294-300 . 百度学术
14. 彭雪,赵辉,郑肇谦,庞海婷. 融合多种嵌入表示的中文命名实体识别. 长春工业大学学报. 2022(01): 81-90 . 百度学术
15. 刘巨升,于红,杨惠宁,邵立铭,宋奇书,李光宇,张思佳,孙华. 基于多核卷积神经网络(BERT+Multi-CNN+CRF)的水产医学嵌套命名实体识别. 大连海洋大学学报. 2022(03): 524-530 . 百度学术
16. 刘巨升,杨惠宁,孙哲涛,杨鹤,邵立铭,于红,张思佳,叶仕根. 面向知识图谱构建的水产动物疾病诊治命名实体识别. 农业工程学报. 2022(07): 210-217 . 百度学术
17. 左亚尧,陈皓宇,陈致然,洪嘉伟,陈坤. 融合多语义特征的命名实体识别方法. 计算机应用. 2022(07): 2001-2008 . 百度学术
18. 臧凌玉,张应中,罗晓芳. 基于双重深度迁移学习的机械领域命名实体识别. 计算机应用与软件. 2022(09): 219-224 . 百度学术
19. 范晓武,葛嘉恒. 高速公路突发事件实体识别及事件分类联合模型研究. 计算机时代. 2021(01): 11-15+20 . 百度学术
20. 赵鹏飞,赵春江,吴华瑞,王维. 基于注意力机制的农业文本命名实体识别. 农业机械学报. 2021(01): 185-192 . 百度学术
21. 姜同强,王岚熙. 基于双向编码器表示模型和注意力机制的食品安全命名实体识别. 科学技术与工程. 2021(03): 1103-1108 . 百度学术
22. 王玉玲. 大数据背景的电子商务商品实体识别算法. 微型电脑应用. 2021(06): 80-83 . 百度学术
23. 娄培,方安,赵琬清,杨晨柳,胡佳慧. 电子病历信息抽取可视化分析. 医学信息学杂志. 2021(04): 35-40 . 百度学术
24. 刘继明,孙成,袁野. 基于训练模型改进的语音问句信息抽取方法. 科学技术与工程. 2021(18): 7635-7641 . 百度学术
25. 郑丽敏,任乐乐. 采用融合规则与BERT-FLAT模型对营养健康领域命名实体识别. 农业工程学报. 2021(20): 211-218 . 百度学术
26. 张晗,胡永进,郭渊博,陈吉成. 信息安全领域内实体共指消解技术研究. 通信学报. 2020(02): 165-175 . 百度学术
27. 尉桢楷,程梦,周夏冰,李志峰,邹博伟,洪宇,姚建民. 基于类卷积交互式注意力机制的属性抽取研究. 计算机研究与发展. 2020(11): 2456-2466 . 本站查看
28. 胡万亭,郭建英,张继永. 一种基于改进ELMO模型的组织机构名识别方法. 计算机技术与发展. 2020(11): 25-29 . 百度学术
其他类型引用(54)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 82