Dialect Language Recognition Based on Multi-Task Learning
-
摘要: 近年来深度学习尤其是神经网络的发展,对语音识别这类复杂的模式分类问题提供了新的解决思路.为加强对我国方言语种的保护工作、提高方言语种识别的准确率以及丰富语音识别的前处理模块,首先采用目前语音识别领域应用最广泛的LSTM模型搭建单任务方言语种识别模型SLNet作为基线系统.其次,针对中国方言的多样性、复杂性特点,基于多任务学习的参数共享机制,通过多任务神经网络模型发现不同语种间的隐含相关特性,提出基于多语种任务的方言语种识别模型MTLNet.进一步根据中国方言的区域特点,采用基于参数硬共享的多任务学习模式,构建基于辅助任务的多任务学习神经网络ATLNet.经实验验证表明:相比于单任务神经网络方言语种识别,MTLNet和ATLNet将识别准确率可提升至80.2%,弥补了单任务模型的单一性和弱泛化性.Abstract: Development of deep learning and neural networks in recent years has led to new solutions to the complicated pattern recognition problems of speech recognition. In order to reinforce the protection of Chinese dialects, to improve the accuracy of dialect language recognition and the diversity of speech signal pre-processing modules for language recognition, this paper proposes a single-task dialect language recognition model, SLNet, on the basis of LSTM and currently the most widely used model in the field of speech recognition. Considering the diversity and complexity of Chinese dialects, on the basis of a multi-task learning parameter sharing mechanism, we use a neural network model to discover the implicit correlation characteristics of different dialects and propose the MTLNet, a dialect recognition model based on multilingual tasking. Further considering the regional characteristics of Chinese dialects, we adopt a multi-task learning model based on hard parameter sharing to construct the ATLNet, a multi-task learning neural network model based on auxiliary tasks. We design several sets of experiments to compare a single-task dialect language recognition model with the MTLNet and ATLNet models proposed in this paper. The results show multi-task methods improve the accuracy of language recognition to 80.2% on average and make up the singularity and weak generalization of the single-task model.
-
-
期刊类型引用(11)
1. 肖宇庭,吕晓琪,谷宇,刘传强. 基于拆分残差网络的糖尿病视网膜病变分类. 广西师范大学学报(自然科学版). 2024(01): 91-101 . 百度学术
2. 吕德珍,赵玉,苗素琴. 基于分布式多节点医疗管理系统进程设计. 计算机与数字工程. 2024(02): 382-387 . 百度学术
3. 盛文娟,赖振谱,杨宁,Peng Gangding. 基于改进AdaBoost算法的可调谐F-P滤波器温漂补偿方法. 光学学报. 2023(03): 48-56 . 百度学术
4. 傅懋钟,胡海洋,李忠金. 面向GPU集群的动态资源调度方法. 计算机研究与发展. 2023(06): 1308-1321 . 本站查看
5. 杨小琴,朱玉全. 基于距离限定优化的多姿态人脸图像智能识别. 计算机仿真. 2022(01): 200-203+282 . 百度学术
6. 王昕. 梯度下降及优化算法研究综述. 电脑知识与技术. 2022(08): 71-73 . 百度学术
7. 赵永亮,于倩,邓博,韩丽君,高红梅. 基于博弈论及机器学习的最优化算法设计与仿真. 电子设计工程. 2022(13): 23-27 . 百度学术
8. 李晓锋,燕少飞,吴宸. 移动终端操作系统应用程序恶意检测系统技术研究. 电子技术与软件工程. 2022(17): 75-79 . 百度学术
9. 蒋平. 基于卷积神经网络的图像精度深度优化. 淮阴工学院学报. 2021(03): 30-34 . 百度学术
10. 杨国葳,李宏坤,张明亮,黄刚劲. 基于一维深度卷积自动编码器的刀具状态监测方法. 振动与冲击. 2021(21): 223-233+274 . 百度学术
11. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 . 百度学术
其他类型引用(24)
计量
- 文章访问数: 1154
- HTML全文浏览量: 2
- PDF下载量: 1153
- 被引次数: 35