Intrusion Detection of Industrial Control System Based on Correlation Information Entropy and CNN-BiLSTM
-
摘要: 入侵检测技术旨在有效地检测网络中异常的攻击,对网络安全至关重要.针对传统的入侵检测方法难以从工业控制系统通信数据中提取有效数据特征的问题,提出一种基于相关信息熵和CNN-BiLSTM的入侵检测模型,该模型将基于相关信息熵的特征选择和融合的深度学习算法相结合,因此能够有效去除噪声冗余,减少计算量,提高检测精度.首先针对不平衡样本等问题进行相应预处理,并通过基于相关信息熵的算法进行特征选择,达到去除噪声数据和冗余特征的目的;然后分别运用卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)从时间和空间维度提取数据特征,通过多头注意力机制进行特征融合,进而得出最终检测结果;最后通过单一变量原则和交叉验证方式获得最优的模型.通过与其他传统入侵检测方法实验对比得出:该模型具有更高的准确率(99.21%)和较低的漏报率(0.77%).
-
关键词:
- 工业控制系统 /
- 入侵检测 /
- 相关信息熵 /
- 卷积-双向长短期记忆网络 /
- 多头注意力机制
Abstract: Intrusion detection aims to effectively detect abnormal attacks in the network, which is critical for cyber security. Considering the problem that traditional intrusion detection methods are difficult to extract effective data features from industrial control system communication data, a intrusion detection model based on correlation information entropy and CNN-BiLSTM is proposed. It combines feature selection based on correlation information entropy with fused deep learning algorithms, and thus it can effectively remove noise redundancy, reduce computation and improve detection accuracy. Firstly, the corresponding pre-processing is carried out for the imbalanced samples, and the algorithm based on correlation information entropy is implied to select the features of the samples to achieve the purposes of removing noise data and redundant features. Then, convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) network are applied respectively to extract data features from time and space dimensions, and realize feature fusion through multi-head attention mechanism to obtain the final test results. Finally, the optimal model is obtained by the single variable principle and cross-validation method. Compared with other traditional intrusion detection methods, the model has higher accuracy (99.21%) and lower false negative rate (0.77%). -
-
期刊类型引用(11)
1. 肖宇庭,吕晓琪,谷宇,刘传强. 基于拆分残差网络的糖尿病视网膜病变分类. 广西师范大学学报(自然科学版). 2024(01): 91-101 . 百度学术
2. 吕德珍,赵玉,苗素琴. 基于分布式多节点医疗管理系统进程设计. 计算机与数字工程. 2024(02): 382-387 . 百度学术
3. 盛文娟,赖振谱,杨宁,Peng Gangding. 基于改进AdaBoost算法的可调谐F-P滤波器温漂补偿方法. 光学学报. 2023(03): 48-56 . 百度学术
4. 傅懋钟,胡海洋,李忠金. 面向GPU集群的动态资源调度方法. 计算机研究与发展. 2023(06): 1308-1321 . 本站查看
5. 杨小琴,朱玉全. 基于距离限定优化的多姿态人脸图像智能识别. 计算机仿真. 2022(01): 200-203+282 . 百度学术
6. 王昕. 梯度下降及优化算法研究综述. 电脑知识与技术. 2022(08): 71-73 . 百度学术
7. 赵永亮,于倩,邓博,韩丽君,高红梅. 基于博弈论及机器学习的最优化算法设计与仿真. 电子设计工程. 2022(13): 23-27 . 百度学术
8. 李晓锋,燕少飞,吴宸. 移动终端操作系统应用程序恶意检测系统技术研究. 电子技术与软件工程. 2022(17): 75-79 . 百度学术
9. 蒋平. 基于卷积神经网络的图像精度深度优化. 淮阴工学院学报. 2021(03): 30-34 . 百度学术
10. 杨国葳,李宏坤,张明亮,黄刚劲. 基于一维深度卷积自动编码器的刀具状态监测方法. 振动与冲击. 2021(21): 223-233+274 . 百度学术
11. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 . 百度学术
其他类型引用(24)
计量
- 文章访问数: 1732
- HTML全文浏览量: 5
- PDF下载量: 950
- 被引次数: 35