• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

Twitter社交网络用户行为理解及个性化服务推荐算法研究

于亚新, 刘梦, 张宏宇

于亚新, 刘梦, 张宏宇. Twitter社交网络用户行为理解及个性化服务推荐算法研究[J]. 计算机研究与发展, 2020, 57(7): 1369-1380. DOI: 10.7544/issn1000-1239.2020.20190158
引用本文: 于亚新, 刘梦, 张宏宇. Twitter社交网络用户行为理解及个性化服务推荐算法研究[J]. 计算机研究与发展, 2020, 57(7): 1369-1380. DOI: 10.7544/issn1000-1239.2020.20190158
Yu Yaxin, Liu Meng, Zhang Hongyu. Research on User Behavior Understanding and Personalized Service Recommendation Algorithm in Twitter Social Networks[J]. Journal of Computer Research and Development, 2020, 57(7): 1369-1380. DOI: 10.7544/issn1000-1239.2020.20190158
Citation: Yu Yaxin, Liu Meng, Zhang Hongyu. Research on User Behavior Understanding and Personalized Service Recommendation Algorithm in Twitter Social Networks[J]. Journal of Computer Research and Development, 2020, 57(7): 1369-1380. DOI: 10.7544/issn1000-1239.2020.20190158
于亚新, 刘梦, 张宏宇. Twitter社交网络用户行为理解及个性化服务推荐算法研究[J]. 计算机研究与发展, 2020, 57(7): 1369-1380. CSTR: 32373.14.issn1000-1239.2020.20190158
引用本文: 于亚新, 刘梦, 张宏宇. Twitter社交网络用户行为理解及个性化服务推荐算法研究[J]. 计算机研究与发展, 2020, 57(7): 1369-1380. CSTR: 32373.14.issn1000-1239.2020.20190158
Yu Yaxin, Liu Meng, Zhang Hongyu. Research on User Behavior Understanding and Personalized Service Recommendation Algorithm in Twitter Social Networks[J]. Journal of Computer Research and Development, 2020, 57(7): 1369-1380. CSTR: 32373.14.issn1000-1239.2020.20190158
Citation: Yu Yaxin, Liu Meng, Zhang Hongyu. Research on User Behavior Understanding and Personalized Service Recommendation Algorithm in Twitter Social Networks[J]. Journal of Computer Research and Development, 2020, 57(7): 1369-1380. CSTR: 32373.14.issn1000-1239.2020.20190158

Twitter社交网络用户行为理解及个性化服务推荐算法研究

基金项目: 国家自然科学基金项目(61871106,61973059);国家重点研发计划项目(2016YFC0101500)
详细信息
  • 中图分类号: TP311

Research on User Behavior Understanding and Personalized Service Recommendation Algorithm in Twitter Social Networks

Funds: This work was supported by the National Natural Science Foundation of China (61871106, 61973059) and the National Key Research and Development Program of China (2016YFC0101500).
  • 摘要: 随着社交网迅速发展,产生了大量带有时空信息的短文本数据.这些短文本数据因其文本长度过短且所带地理位置信息过于稀疏导致用户行为主题难于捕捉.此外,由于目前大多数用户行为理解相关研究工作缺少对行为要素间依赖关系的适度融合,因而造成行为理解具有片面性.基于此,首先提出2种综合考虑用户行为发生时间、活动内容、活动区域的用户-时间-活动模型(user-time-activity model, UTAM)和用户-时间-区域模型(user-time-region model, UTRM),用于深刻理解用户行为规律;然后利用LDA(latent Dirichlet allocation)技术,抽取用户活动-服务主题,提出活动-服务主题模型(activity-to-service topic model, ASTM),用于挖掘活动和服务间的对应关系;最后将服务地点属性内耦合性纳入考虑,提出了基于耦合和距离的矩阵分解(matrix factorization based on couple & distance, MFCD)算法,用于提高推荐质量.为验证所提模型和算法的有效性,在真实Twitter数据集上进行了扩展性实验,结果表明:所提模型对提高个性化服务推荐质量是有效的,MFCD算法对于用户的行为理解效果也优于传统矩阵分解算法.
    Abstract: With the rapid development of social networks in recent years, a large amount of short text data with time-spacial information is produced accordingly. Due to short length of text and sparseness of geographic location, it is very difficult to capture the semantic topics of user behavior. In addition, most existing research work related to user behavior understanding has not taken the behavior elements dependency into account, which results in the incomplete understanding of user behavior. Based on these, two models mixed with time, activity and region, i.e., user-time-activity model (UTAM) and user-time-region model (UTRM), are proposed firstly in this paper so as to explore behavior principles effectively. And then, by extracting activity-service topics based on latent Dirichlet allocation (LDA) techniques, an activity-to-service topic model (ASTM) is proposed in order to mine corresponding relationships between activities and services. Finally, a novel matrix factorization algorithm fused with distance and coupled similarity, i.e., matrix factorization based on couple & distance (MFCD), is put forward to improve the recommendation quality. In order to verify the effectiveness of proposed models and algorithms, extensive experiments are executed on a real Twitter dataset. Experimental results show that the proposed models can improve the quality of personalized recommendation service greatly, and the performance of MFCD algorithm is superior to the traditional matrix factorization algorithm on the effect of understanding user behaviors.
  • 期刊类型引用(14)

    1. 暴琳,朱志宇,孙晓燕,徐标. 面向多源异构数据的个性化搜索和推荐算法综述. 控制理论与应用. 2024(02): 189-209 . 百度学术
    2. 王一博,张鹏翼. 基于LDA模型的国内用户画像研究主题及演化分析. 情报探索. 2024(02): 99-105 . 百度学术
    3. 韩永印,王侠,王志晓. 基于决策树的社交网络隐式用户行为数据挖掘方法. 沈阳工业大学学报. 2024(03): 312-317 . 百度学术
    4. 黄玲,黄镇伟,黄梓源,关灿荣,高月芳,王昌栋. 图卷积宽度跨域推荐系统. 计算机研究与发展. 2024(07): 1713-1729 . 本站查看
    5. 廖彬,张陶,于炯,李敏. NLGAE:一种基于改进网络结构及损失函数的图自编码器节点分类模型. 计算机科学. 2024(10): 234-246 . 百度学术
    6. 刘树越 ,于亚新 ,吴晓露 ,夏子芳 ,王子腾 . 自注意力下时空-语义相融合的POI序列推荐. 小型微型计算机系统. 2023(03): 456-462 . 百度学术
    7. 章育涛,黎英,杨雅莉. 社交网站图像分析研究综述. 信息技术与信息化. 2023(08): 114-121 . 百度学术
    8. 秦鹏,贾洪杰,霍兴瀛,邓朝艳. 融合大数据挖掘的用户个性化POI推荐方法. 计算机仿真. 2022(06): 355-358+385 . 百度学术
    9. 郑捷,杨兴耀,于炯,李想. 基于人工蜂群的移动终端大数据半监督推荐. 计算机仿真. 2022(07): 497-501 . 百度学术
    10. 李梁森,杨德宏,翟文龙,李刘飞,高励. 基于微博数据的云南省地理情感及主题特征研究. 城市勘测. 2022(04): 12-16 . 百度学术
    11. 赵凯华,徐建民,鲍彩倩. 一个基于信念网络的微博推荐模型. 河北大学学报(自然科学版). 2022(04): 438-448 . 百度学术
    12. 王小青,苏锋,蔡传根. 基于数据挖掘技术的影视智能推荐算法. 现代电子技术. 2021(11): 98-101 . 百度学术
    13. 周炫余,刘林,陈圆圆,洪嘉玲,卢笑. 基于多模态数据融合的大学生心理健康自动评估模型设计与应用研究. 电化教育研究. 2021(08): 72-78 . 百度学术
    14. 刘凯阳,姜峰,王辉. 航天话题公众关注热点和情感分析. 科技传播. 2021(19): 31-34 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 27
出版历程
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回