An Offset Addition Vector Coding Strategy for Supporting Path Tracing Query in RFID-Based Supply Chains
-
摘要: 作为智慧物联的重要技术支撑,无线射频识别 (radio frequency identification, RFID)技术,已广泛用于供应链等物品追溯及实时监控领域.为提高基于RFID供应链环境中标签对象路径追溯查询效率,须对RFID时空数据进行有效编码.考虑到RFID供应链数据具有海量性、存在环路、更新频繁等特点,在2个向量之间可以插入无限个向量的思想基础上,提出了一种偏增向量路径编码策略.该策略以时空数据结点为编码对象,利用向量加法给结点分配唯一1对向量,实现对每个结点时空信息的统一编码.同时,针对码值过大导致的溢出问题提出了优化方案,并进行了正确性证明.实验结果表明:所提出的偏增向量路径编码策略及其优化策略能满足不同类型追溯查询需求,且具有编码速度快、码值溢出速度慢、更新效率高和支持环路等优点.Abstract: As an important technical support of intelligent Internet of things, radio frequency identification (RFID) technology has been widely used in supply chain tracing and real-time monitoring. In order to improve the tracking and query efficiency of tagged objects in the RFID-based supply chain environment, it is necessary to effectively encode the temporal and spatial data of RFID objects. Considering the characteristics including big volume, the existence of the loop and frequent update of the data in RFID-based supply chains, based on the idea that infinite vectors can be inserted between a pair of vectors, an offset addition vector path coding strategy is proposed. This strategy takes spatiotemporal data nodes as coding objects and assigns a unique pair of vectors to each node by vector addition to achieve uniform coding. At the same time, an optimization strategy is proposed to solve the overflow problem caused by excessive code value, and the correctness of the optimization strategy is proved. The experimental results show that the proposed vector encoding strategy and its optimization strategy can meet the requirements of different types of tracing queries, and have the advantages of fast encoding speed, slow overflow of code value, high update efficiency and can support loop.
-
-
期刊类型引用(12)
1. 武家辉,李科研,陈丽新,张家诺,刘帅兵,逯鹏. 神经架构搜索技术研究综述. 计算机应用研究. 2025(01): 11-18 . 百度学术
2. 刘倩男,闫佳,刘诚. 基于改进MobileNetV3的岩石薄片分类研究. 电脑知识与技术. 2025(07): 26-28 . 百度学术
3. 吴艳灵,汤宝平,邓蕾,付豪. 低通筛选优化神经架构搜索的风电齿轮箱边缘侧故障诊断方法. 机械工程学报. 2025(07): 361-372 . 百度学术
4. 宋玉红,沙行勉,诸葛晴凤,许瑞,王寒. RR-SC:边缘设备中基于随机计算神经网络的运行时可重配置框架. 计算机研究与发展. 2024(04): 840-855 . 本站查看
5. 蒋鹏程,薛羽. 基于排序得分预测的演化神经架构搜索方法. 计算机学报. 2024(11): 2522-2535 . 百度学术
6. 刘威,郭直清,王东,刘光伟,姜丰,牛英杰,马灵潇. 改进鲸鱼算法及其在浅层神经网络搜索中的权值阈值优化. 控制与决策. 2023(04): 1144-1152 . 百度学术
7. 鞠翰文,邓扬,李爱群. 桥梁结构挠度-温度-车辆荷载监测数据相关性模型. 振动与冲击. 2023(06): 79-89 . 百度学术
8. 丁熠,郑伟,耿技,邱泸谊,秦志光. 基于多层级并行神经网络的多模态脑肿瘤图像分割框架. 中国图象图形学报. 2023(07): 2182-2194 . 百度学术
9. 王上,唐欢容. 一种基于混合粒子群优化算法的深度卷积神经网络架构搜索方法. 计算机应用研究. 2023(07): 2019-2024 . 百度学术
10. 朱光辉,祁加豪,朱振南,袁春风,黄宜华. 渐进式深度集成架构搜索算法研究. 计算机学报. 2023(10): 2041-2065 . 百度学术
11. 钟运琴,朱月琴,焦守涛. 边缘大数据分析预测建模方法研究. 高技术通讯. 2022(10): 1067-1075 . 百度学术
12. 包振山,秘博闻,张文博. 基于人工经验网络架构为初始化的NAS算法. 北京工业大学学报. 2021(08): 854-862 . 百度学术
其他类型引用(51)
计量
- 文章访问数: 729
- HTML全文浏览量: 2
- PDF下载量: 142
- 被引次数: 63