• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于超图的EBSN个性化推荐及优化算法

于亚新, 张文超, 李振国, 李莹

于亚新, 张文超, 李振国, 李莹. 基于超图的EBSN个性化推荐及优化算法[J]. 计算机研究与发展, 2020, 57(12): 2556-2570. DOI: 10.7544/issn1000-1239.2020.20190275
引用本文: 于亚新, 张文超, 李振国, 李莹. 基于超图的EBSN个性化推荐及优化算法[J]. 计算机研究与发展, 2020, 57(12): 2556-2570. DOI: 10.7544/issn1000-1239.2020.20190275
Yu Yaxin, Zhang Wenchao, Li Zhenguo, Li Ying. Hypergraph-Based Personalized Recommendation & Optimization Algorithm in EBSN[J]. Journal of Computer Research and Development, 2020, 57(12): 2556-2570. DOI: 10.7544/issn1000-1239.2020.20190275
Citation: Yu Yaxin, Zhang Wenchao, Li Zhenguo, Li Ying. Hypergraph-Based Personalized Recommendation & Optimization Algorithm in EBSN[J]. Journal of Computer Research and Development, 2020, 57(12): 2556-2570. DOI: 10.7544/issn1000-1239.2020.20190275
于亚新, 张文超, 李振国, 李莹. 基于超图的EBSN个性化推荐及优化算法[J]. 计算机研究与发展, 2020, 57(12): 2556-2570. CSTR: 32373.14.issn1000-1239.2020.20190275
引用本文: 于亚新, 张文超, 李振国, 李莹. 基于超图的EBSN个性化推荐及优化算法[J]. 计算机研究与发展, 2020, 57(12): 2556-2570. CSTR: 32373.14.issn1000-1239.2020.20190275
Yu Yaxin, Zhang Wenchao, Li Zhenguo, Li Ying. Hypergraph-Based Personalized Recommendation & Optimization Algorithm in EBSN[J]. Journal of Computer Research and Development, 2020, 57(12): 2556-2570. CSTR: 32373.14.issn1000-1239.2020.20190275
Citation: Yu Yaxin, Zhang Wenchao, Li Zhenguo, Li Ying. Hypergraph-Based Personalized Recommendation & Optimization Algorithm in EBSN[J]. Journal of Computer Research and Development, 2020, 57(12): 2556-2570. CSTR: 32373.14.issn1000-1239.2020.20190275

基于超图的EBSN个性化推荐及优化算法

基金项目: 国家自然科学基金项目(61871106,61973059);国家重点研发计划项目(2016YFC0101500)
详细信息
  • 中图分类号: TP311

Hypergraph-Based Personalized Recommendation & Optimization Algorithm in EBSN

Funds: This work was supported by the National Natural Science Foundation of China (61871106, 61973059) and the National Key Research and Development Program of China (2016YFC0101500).
  • 摘要: 基于事件的社交网(event-based social networks, EBSN)中的个性化推荐服务是一个十分重要且颇具应用价值的问题,现有研究工作主要基于普通图来对EBSN中的关系进行建模,但由于EBSN是一种异构型复杂社交网络,具有多种不同类型实体,因而用普通图建模EBSN会存在高维信息丢失问题,导致推荐质量降低.基于此,首先提出一种基于超图模型的EBSN个性化推荐(hypergraph-based personalized recommendation in EBSN, PRH)算法,其基本思想在于利用超图具有不丢失高维数据信息之特点来更准确地对EBSN中复杂社交关系数据进行高维建模,并利用流形排序正则化计算获取初步推荐结果.其次,又分别从查询向量设置方式改进和对不同类超边施以不同权重等角度,提出了优化的PRH(optimized PRH, oPRH)算法以进一步优化PRH算法所获推荐结果,从而实现精准推荐.扩展实验表明,基于超图的EBSN个性化推荐及其优化算法,推荐结果相比于以前基于普通图的推荐算法具有更高准确性.
    Abstract: The service of personalized recommendations in event-based social networks (EBSN) is a very significant and valuable issue. Most of existing research work are mainly based on the ordinary graph to model relationships in EBSN. However, EBSN is a heterogeneous and complex network with many different types of entities. Because of that, modeling EBSN with ordinary graphs has the problem of high-dimensional information loss, resulting in reduced recommendation quality. Based on this background, in this paper, we first propose a hypergraph-based personalized recommendation (PRH) algorithm in EBSN. The basic idea is to make use of the characteristics of hypergraphs without losing high-dimensional data information to model high-dimensional complex social relationship data in EBSN more accurately, and to use regularized calculation of manifold ordering to obtain preliminary recommendation results. Next, this paper proposes an optimized PRH (oPRH) algorithm from the perspective of improving the query vector setting method and applying diverse weights to all sorts of different types of super edges to further optimize the recommendation results obtained by the PRH algorithm, so as to achieve accurate recommendation. The extended experiments show that the hypergraph-based personalized recommendation algorithm in EBSN and its optimization algorithm have higher accuracy than the previous ordinary graph-based recommendation algorithms.
  • 期刊类型引用(9)

    1. 臧洁,任旭,冯艳爽,王妍,肖萍,鲁锦涛. 一种干扰系数自探测的网络事件选取方法. 小型微型计算机系统. 2024(03): 763-768 . 百度学术
    2. 路苗,门可,马永红,张海瑞,冯彦成. 基于SIS模型的群体社交网络舆情演化仿真. 吉林大学学报(信息科学版). 2023(01): 106-111 . 百度学术
    3. 马帅,刘建伟,左信. 图神经网络综述. 计算机研究与发展. 2022(01): 47-80 . 本站查看
    4. 夏一雪,张立红,何巍,张双狮. 自治线性风险作用下网络舆情演化建模与仿真研究. 情报杂志. 2022(05): 92-98 . 百度学术
    5. 易杰,曹腾飞,黄明峰,黄肖翰,张子震. 基于时间编码LSTM的高校舆情热点趋势预测研究. 大数据. 2022(05): 124-138 . 百度学术
    6. 张杨,廉吉庆,张扬,高德毅. 国内网络舆情情感研究热点分析. 网络安全与数据治理. 2022(07): 47-55 . 百度学术
    7. 徐缤荣. 融媒体背景下社会热点新闻舆情传播控制模型构建. 微型电脑应用. 2022(10): 149-152 . 百度学术
    8. 臧洁,任旭. 考虑兴趣偏好和多事件影响的网络事件推演模型研究. 辽宁大学学报(自然科学版). 2022(04): 298-306 . 百度学术
    9. 赵剑,董文华,史丽娟,匡哲君,毕京晓,王晢宇,强文倩. 针对突发公共事件的舆情监测与可视化分析. 吉林大学学报(信息科学版). 2021(06): 712-719 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  912
  • HTML全文浏览量:  8
  • PDF下载量:  378
  • 被引次数: 14
出版历程
  • 发布日期:  2020-11-30

目录

    /

    返回文章
    返回