• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于深度强化学习的移动边缘计算任务卸载研究

卢海峰, 顾春华, 罗飞, 丁炜超, 杨婷, 郑帅

卢海峰, 顾春华, 罗飞, 丁炜超, 杨婷, 郑帅. 基于深度强化学习的移动边缘计算任务卸载研究[J]. 计算机研究与发展, 2020, 57(7): 1539-1554. DOI: 10.7544/issn1000-1239.2020.20190291
引用本文: 卢海峰, 顾春华, 罗飞, 丁炜超, 杨婷, 郑帅. 基于深度强化学习的移动边缘计算任务卸载研究[J]. 计算机研究与发展, 2020, 57(7): 1539-1554. DOI: 10.7544/issn1000-1239.2020.20190291
Lu Haifeng, Gu Chunhua, Luo Fei, Ding Weichao, Yang Ting, Zheng Shuai. Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(7): 1539-1554. DOI: 10.7544/issn1000-1239.2020.20190291
Citation: Lu Haifeng, Gu Chunhua, Luo Fei, Ding Weichao, Yang Ting, Zheng Shuai. Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(7): 1539-1554. DOI: 10.7544/issn1000-1239.2020.20190291
卢海峰, 顾春华, 罗飞, 丁炜超, 杨婷, 郑帅. 基于深度强化学习的移动边缘计算任务卸载研究[J]. 计算机研究与发展, 2020, 57(7): 1539-1554. CSTR: 32373.14.issn1000-1239.2020.20190291
引用本文: 卢海峰, 顾春华, 罗飞, 丁炜超, 杨婷, 郑帅. 基于深度强化学习的移动边缘计算任务卸载研究[J]. 计算机研究与发展, 2020, 57(7): 1539-1554. CSTR: 32373.14.issn1000-1239.2020.20190291
Lu Haifeng, Gu Chunhua, Luo Fei, Ding Weichao, Yang Ting, Zheng Shuai. Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(7): 1539-1554. CSTR: 32373.14.issn1000-1239.2020.20190291
Citation: Lu Haifeng, Gu Chunhua, Luo Fei, Ding Weichao, Yang Ting, Zheng Shuai. Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(7): 1539-1554. CSTR: 32373.14.issn1000-1239.2020.20190291

基于深度强化学习的移动边缘计算任务卸载研究

基金项目: 国家自然科学基金项目(61472139);华东理工大学教育教学规律与方法研究项目(ZH1726107)
详细信息
  • 中图分类号: TP391

Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing

Funds: This work was supported by the National Natural Science Foundation of China (61472139) and the Educational Teaching Law and Method Research Project of East China University of Science and Technology (ZH1726107).
  • 摘要: 在移动边缘计算中,本地设备可以将任务卸载到靠近网络边缘的服务器上进行数据存储和计算处理,以此降低业务服务的延迟和功耗,因此任务卸载决策具有很大的研究价值.首先构建了大规模异构移动边缘计算中具有多服务节点和移动任务内部具有多依赖关系的卸载模型;随后结合移动边缘计算的实际应用场景,提出利用改进的深度强化学习算法优化任务卸载策略;最后通过综合比较任务卸载策略的能耗、成本、负载均衡、延迟、网络使用量和平均执行时间等指标,分析了各卸载策略的优缺点.仿真实验结果表明,基于长短期记忆(long short-term memory, LSTM)网络和事后经验回放(hindsight experience replay, HER)改进的HERDRQN算法在能耗、费用、负载均衡和延迟上都有很好的效果.另外利用各算法策略对一定数量的应用进行卸载,通过比较异构设备在不同CPU利用率下的数量分布来验证卸载策略与各评价指标之间的关系,以此证明HERDRQN算法生成的策略在解决任务卸载问题中的科学性和有效性.
    Abstract: In the mobile edge computing, the local device can offload tasks to the server near the edge of the network for data storage and computation processing, thereby reducing the delay and power consumption of the service. Therefore, the task offloading decision has great research value. This paper first constructs an offloading model with multi-service nodes and multi-dependencies within mobile tasks in large-scale heterogeneous mobile edge computing. Then, an improved deep reinforcement learning algorithm is proposed to optimize the task offloading strategy by combining the actual application scenarios of mobile edge computing. Finally, the advantages and disadvantages of each offloading strategy are analyzed by comprehensively comparing the energy consumption, cost, load balancing, delay, network usage and average execution time. The simulation results show that the improved HERDRQN algorithm based on long short-term memory (LSTM) network and HER (hindsight experience replay) has good effects on energy consumption, cost, load balancing and delay. In addition, this paper uses various algorithm strategies to offload a certain number of applications, and compares the number distribution of heterogeneous devices under different CPU utilizations to verify the relationship between the offloading strategy and each evaluation index, so as to prove that the strategy generated by HERDRQN algorithm is scientific and effective in solving the task offloading problem.
  • 期刊类型引用(5)

    1. 李萍,王丽丽. 国内多模态技术的研究现状与发展趋势:基于CiteSpace的可视化分析. 智能计算机与应用. 2025(01): 194-202 . 百度学术
    2. 马辉,王瑞琴,杨帅. 一种渐进式增长条件生成对抗网络模型. 电信科学. 2023(06): 105-113 . 百度学术
    3. 涂荣成,毛先领,孔伟杰,蔡成飞,赵文哲,王红法,黄河燕. 基于CLIP生成多事件表示的视频文本检索方法. 计算机研究与发展. 2023(09): 2169-2179 . 本站查看
    4. 孔珊珊. 基于深度学习的机器人舞蹈自动生成研究. 自动化与仪器仪表. 2022(04): 237-240 . 百度学术
    5. 李媛,陈昭炯,叶东毅. 基于参考图语义匹配的花卉线稿工笔效果上色算法. 计算机研究与发展. 2022(06): 1271-1285 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  3046
  • HTML全文浏览量:  36
  • PDF下载量:  1398
  • 被引次数: 8
出版历程
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回