• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

单声道语音降噪与去混响研究综述

蓝天, 彭川, 李森, 叶文政, 李萌, 惠国强, 吕忆蓝, 钱宇欣, 刘峤

蓝天, 彭川, 李森, 叶文政, 李萌, 惠国强, 吕忆蓝, 钱宇欣, 刘峤. 单声道语音降噪与去混响研究综述[J]. 计算机研究与发展, 2020, 57(5): 928-953. DOI: 10.7544/issn1000-1239.2020.20190306
引用本文: 蓝天, 彭川, 李森, 叶文政, 李萌, 惠国强, 吕忆蓝, 钱宇欣, 刘峤. 单声道语音降噪与去混响研究综述[J]. 计算机研究与发展, 2020, 57(5): 928-953. DOI: 10.7544/issn1000-1239.2020.20190306
Lan Tian, Peng Chuan, Li Sen, Ye Wenzheng, Li Meng, Hui Guoqiang, Lü Yilan, Qian Yuxin, Liu Qiao. An Overview of Monaural Speech Denoising and Dereverberation Research[J]. Journal of Computer Research and Development, 2020, 57(5): 928-953. DOI: 10.7544/issn1000-1239.2020.20190306
Citation: Lan Tian, Peng Chuan, Li Sen, Ye Wenzheng, Li Meng, Hui Guoqiang, Lü Yilan, Qian Yuxin, Liu Qiao. An Overview of Monaural Speech Denoising and Dereverberation Research[J]. Journal of Computer Research and Development, 2020, 57(5): 928-953. DOI: 10.7544/issn1000-1239.2020.20190306
蓝天, 彭川, 李森, 叶文政, 李萌, 惠国强, 吕忆蓝, 钱宇欣, 刘峤. 单声道语音降噪与去混响研究综述[J]. 计算机研究与发展, 2020, 57(5): 928-953. CSTR: 32373.14.issn1000-1239.2020.20190306
引用本文: 蓝天, 彭川, 李森, 叶文政, 李萌, 惠国强, 吕忆蓝, 钱宇欣, 刘峤. 单声道语音降噪与去混响研究综述[J]. 计算机研究与发展, 2020, 57(5): 928-953. CSTR: 32373.14.issn1000-1239.2020.20190306
Lan Tian, Peng Chuan, Li Sen, Ye Wenzheng, Li Meng, Hui Guoqiang, Lü Yilan, Qian Yuxin, Liu Qiao. An Overview of Monaural Speech Denoising and Dereverberation Research[J]. Journal of Computer Research and Development, 2020, 57(5): 928-953. CSTR: 32373.14.issn1000-1239.2020.20190306
Citation: Lan Tian, Peng Chuan, Li Sen, Ye Wenzheng, Li Meng, Hui Guoqiang, Lü Yilan, Qian Yuxin, Liu Qiao. An Overview of Monaural Speech Denoising and Dereverberation Research[J]. Journal of Computer Research and Development, 2020, 57(5): 928-953. CSTR: 32373.14.issn1000-1239.2020.20190306

单声道语音降噪与去混响研究综述

基金项目: 国家自然科学基金项目(U19B2028,61772117);提升政府治理能力大数据应用技术国家工程实验室开放基金项目(10-2018039);四川省科技服务业示范项目(2018GFW0150);中央高校基本科研业务费专项资金(ZYGX2019J077)
详细信息
  • 中图分类号: TP391.4; TN912.3

An Overview of Monaural Speech Denoising and Dereverberation Research

Funds: This work was supported by the National Natural Science Foundation of China (U19B2028, 61772117); the Big Data Application on Improving Government Governance Capabilities National Engineering Laboratory Open Fund Project (10-2018039), the Sichuan Hi-Tech Industrialization Program (2018GFW0150), and the Fundamental Research Funds for the Central Universities (ZYGX2019J077).
  • 摘要: 语音增强是提高语音质量与可懂度的关键技术,在语音识别、语音通话、电话会议和听力辅助等领域具有广泛应用前景与重要研究价值.从模型方法、数据集、特征、评估指标等方面,对单声道语音增强研究工作的发展现状进行了全面调研和深入分析.1)对传统的与基于机器学习的单声道语音降噪以及语音去混响的已有研究工作进行了梳理分类,简要介绍了典型方法的研究思路,并对不同方法的实验结果进行了综合比较;2)对在实验与结果评估过程中所涉及到的常用数据集、常见特征、学习目标与评估指标等进行了整理与介绍;3)对目前单声道语音增强仍然面临的主要问题与挑战进行了总结.
    Abstract: Speech enhancement refers to the use of audio signal processing techniques and various algorithms to improve the intelligibility and quality of the distorted speech signals. It has great research value and a wide range of applications including speech recognition, VoIP, tele-conference and hearing aids. Most early work utilized unsupervised digital signal analysis methods to decompose the speech signal to obtain the characteristics of the clean speech and the noise. With the development of machine learning, some supervised methods which aim to learn the relationship between noisy and clean speech signals were proposed. In particular, the introduction of deep learning has greatly improved the performance. In order to help beginners and related researchers to understand the current research status of this topic, this paper conducts a comprehensive survey of the development process of the monaural speech enhancement, and systematically summarizes from the aspect of model methods, datasets, features, evaluation metrics, etc. First, we divide speech enhancement into noise reduction and de-reverberation, then respectively sort out the existing work of traditional and machine-learning-based methods in these two directions. Moreover, we briefly introduce the main ideas of typical solutions, and compare the performance of different methods. Then, commonly used datasets, features, learning objectives and evaluation metrics in experiments are enumerated and illustrated. Finally, four major challenges and corresponding issues in this area are summarized.
  • 期刊类型引用(20)

    1. 肖鸿洲 ,李长云,王志兵 ,甘英华 ,任国鑫 . 一种稀疏体压特征人员识别方法. 现代电子技术. 2025(03): 111-118 . 百度学术
    2. 王莹. 未经授权的人脸识别支付法律责任解释论. 运城学院学报. 2024(02): 70-74+89 . 百度学术
    3. 洪延青. 人脸识别技术应用的分层治理理论与制度进路. 法律科学(西北政法大学学报). 2024(01): 89-99 . 百度学术
    4. 王勇,熊毅,杨天宇,沈益冉. 一种面向耳戴式设备的用户安全连续认证方法. 计算机研究与发展. 2024(11): 2821-2834 . 本站查看
    5. 杨光锴. 基于扩散模型的指纹图像生成方法. 河北省科学院学报. 2023(01): 13-18+66 . 百度学术
    6. 徐胜超,熊茂华. 基于子模式的人脸局部遮挡智能识别方法. 信息技术. 2023(03): 35-39 . 百度学术
    7. 周宇,向剑文,郑倩荣,赵冬冬. 保护用户数量信息的安全虹膜识别方案. 信息安全学报. 2023(03): 49-64 . 百度学术
    8. 张星星,钟陈,王文峰,苏立伟. 生物特征识别标准概述. 信息技术与标准化. 2023(11): 64-68 . 百度学术
    9. 张雪锋,常振会,张俊杰,王超飞. 指纹和虹膜特征融合的可撤销模板保护方法. 西安邮电大学学报. 2023(04): 51-60 . 百度学术
    10. 钟陈,苏立伟,王文峰. 生物特征识别呈现攻击检测标准化研究. 信息技术与标准化. 2022(Z1): 50-53 . 百度学术
    11. 张宗华,王晟贤,高楠,孟召宗. 基于曲面类型与深度学习融合的三维掌纹识别技术. 电子与信息学报. 2022(04): 1469-1475 . 百度学术
    12. 胡先智,陈浩,梁艳. 多模态生物特征信息安全防护体系研究. 计算机技术与发展. 2022(04): 86-91 . 百度学术
    13. 张波,贺楚博. 基于可撤销人脸的模糊保险箱算法研究与实现. 计算机技术与发展. 2022(06): 126-130 . 百度学术
    14. 帕孜来提·努尔买提,古丽娜孜·艾力木江,乎西旦·居马洪,朱双玲. 一种基于深度学习方法的面部微变识别的研究. 伊犁师范大学学报(自然科学版). 2022(02): 41-46+52 . 百度学术
    15. 杨丽红,尚泽昊. 基于区块链和模糊提取的多特征融合身份认证模型. 数字技术与应用. 2022(08): 218-220 . 百度学术
    16. 董芸嘉,张雪锋,姜文. 基于指纹和手指静脉特征融合的模板保护方法. 传感器与微系统. 2022(11): 9-13 . 百度学术
    17. 张波,佟玉强. 基于双随机相位编码的多特征人脸模板保护方法. 激光与光电子学进展. 2022(18): 215-222 . 百度学术
    18. 王晟贤,张宗华,高楠,孟召宗. 融合曲面类型与迁移学习的三维掌纹识别方法. 传感器与微系统. 2022(12): 118-121 . 百度学术
    19. 丁勇,李佳慧,唐士杰,王会勇. 基于随机映射技术的声纹识别模板保护. 计算机研究与发展. 2020(10): 2201-2208 . 本站查看
    20. 张佳,王红. 基于生物特征识别的Android身份认证终端技术研究. 电子测试. 2020(24): 78-79+56 . 百度学术

    其他类型引用(28)

计量
  • 文章访问数:  2147
  • HTML全文浏览量:  6
  • PDF下载量:  1396
  • 被引次数: 48
出版历程
  • 发布日期:  2020-04-30

目录

    /

    返回文章
    返回