• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

适应立体匹配任务的端到端深度网络

李曈, 马伟, 徐士彪, 张晓鹏

李曈, 马伟, 徐士彪, 张晓鹏. 适应立体匹配任务的端到端深度网络[J]. 计算机研究与发展, 2020, 57(7): 1531-1538. DOI: 10.7544/issn1000-1239.2020.20190478
引用本文: 李曈, 马伟, 徐士彪, 张晓鹏. 适应立体匹配任务的端到端深度网络[J]. 计算机研究与发展, 2020, 57(7): 1531-1538. DOI: 10.7544/issn1000-1239.2020.20190478
Li Tong, Ma Wei, Xu Shibiao, Zhang Xiaopeng. Task-Adaptive End-to-End Networks for Stereo Matching[J]. Journal of Computer Research and Development, 2020, 57(7): 1531-1538. DOI: 10.7544/issn1000-1239.2020.20190478
Citation: Li Tong, Ma Wei, Xu Shibiao, Zhang Xiaopeng. Task-Adaptive End-to-End Networks for Stereo Matching[J]. Journal of Computer Research and Development, 2020, 57(7): 1531-1538. DOI: 10.7544/issn1000-1239.2020.20190478
李曈, 马伟, 徐士彪, 张晓鹏. 适应立体匹配任务的端到端深度网络[J]. 计算机研究与发展, 2020, 57(7): 1531-1538. CSTR: 32373.14.issn1000-1239.2020.20190478
引用本文: 李曈, 马伟, 徐士彪, 张晓鹏. 适应立体匹配任务的端到端深度网络[J]. 计算机研究与发展, 2020, 57(7): 1531-1538. CSTR: 32373.14.issn1000-1239.2020.20190478
Li Tong, Ma Wei, Xu Shibiao, Zhang Xiaopeng. Task-Adaptive End-to-End Networks for Stereo Matching[J]. Journal of Computer Research and Development, 2020, 57(7): 1531-1538. CSTR: 32373.14.issn1000-1239.2020.20190478
Citation: Li Tong, Ma Wei, Xu Shibiao, Zhang Xiaopeng. Task-Adaptive End-to-End Networks for Stereo Matching[J]. Journal of Computer Research and Development, 2020, 57(7): 1531-1538. CSTR: 32373.14.issn1000-1239.2020.20190478

适应立体匹配任务的端到端深度网络

基金项目: 国家自然科学基金项目(61771026,61671451);模式识别国家重点实验室开放课题基金
详细信息
  • 中图分类号: TP391

Task-Adaptive End-to-End Networks for Stereo Matching

Funds: This work was supported by the National Natural Science Foundation of China (61771026, 61671451) and the Open Project Program of the National Laboratory of Pattern Recognition (NLPR).
  • 摘要: 针对现有立体匹配深度网络中特征提取模块冗余度高以及用于视差计算的3D卷积模块感受野受限问题,提出改进的端到端深度网络.相比现有网络,该网络特征提取模块遵循立体匹配特性,结构更简洁;引入分离3D卷积实现大卷积核3D卷积运算以扩充感受野.在SceneFlow数据集上,从匹配精度和计算开销等方面评估所提出网络.实验结果显示:所提出网络在准确度上达到了先进水平;相比现有同类型模块,所提出特征提取模块在保证结果精度的同时能减少90%的参数量,并减少约25%的训练时间;相比3D卷积,所提出的分离3D卷积将卷积核大小提升至覆盖整个视差维度,搭配群组归一化(group normalization, GN),其端点误差(end-point-error, EPE)较基础方法降低了12%的相对量.
    Abstract: Estimating depth/disparity information from stereo pairs via stereo matching is a classical research topic in computer vision. Recently, along with the development of deep learning technologies, many end-to-end deep networks have been proposed for stereo matching. These networks generally borrow convolutional neural network (CNN) structures originally designed for other tasks to extract features. These structures are generally redundant for the task of stereo matching. Besides, 3D convolutions in these networks are too complex to be extended for large perception fields which are helpful for disparity estimation. In order to overcome these problems, we propose a deep network structure based on the properties of stereo matching. In the proposed network, a concise and effective feature extraction module is presented. Moreover, a separated 3D convolution is introduced to avoid parameter explosion caused by increasing the size of convolution kernels. We validate our network on the dataset of SceneFlow in aspects of both accuracy and computation costs. Results show that the proposed network obtains state-of-the-art performance. Compared with the other structures, our feature extraction module can reduce 90% parameters and 25% time cost while achieving comparable accuracy. At the same time, our separated 3D convolution, accompanied by group normalization (GN), achieves lower end-point-error (EPE) than baseline methods.
  • 期刊类型引用(5)

    1. 李萍,王丽丽. 国内多模态技术的研究现状与发展趋势:基于CiteSpace的可视化分析. 智能计算机与应用. 2025(01): 194-202 . 百度学术
    2. 马辉,王瑞琴,杨帅. 一种渐进式增长条件生成对抗网络模型. 电信科学. 2023(06): 105-113 . 百度学术
    3. 涂荣成,毛先领,孔伟杰,蔡成飞,赵文哲,王红法,黄河燕. 基于CLIP生成多事件表示的视频文本检索方法. 计算机研究与发展. 2023(09): 2169-2179 . 本站查看
    4. 孔珊珊. 基于深度学习的机器人舞蹈自动生成研究. 自动化与仪器仪表. 2022(04): 237-240 . 百度学术
    5. 李媛,陈昭炯,叶东毅. 基于参考图语义匹配的花卉线稿工笔效果上色算法. 计算机研究与发展. 2022(06): 1271-1285 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  938
  • HTML全文浏览量:  2
  • PDF下载量:  176
  • 被引次数: 8
出版历程
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回