Research Advances in the Interpretability of Deep Learning
-
摘要: 深度学习的可解释性研究是人工智能、机器学习、认知心理学、逻辑学等众多学科的交叉研究课题,其在信息推送、医疗研究、金融、信息安全等领域具有重要的理论研究意义和实际应用价值.从深度学习可解释性研究起源、研究探索期、模型构建期3方面回顾了深度学习可解释性研究历史,从可视化分析、鲁棒性扰动分析、敏感性分析3方面展现了深度学习现有模型可解释性分析研究现状,从模型代理、逻辑推理、网络节点关联分析、传统机器学习模型改进4方面剖析了可解释性深度学习模型构建研究,同时对当前该领域研究存在的不足作出了分析,展示了可解释性深度学习的典型应用,并对未来可能的研究方向作出了展望.Abstract: The research on the interpretability of deep learning is closely related to various disciplines such as artificial intelligence, machine learning, logic and cognitive psychology. It has important theoretical research significance and practical application value in too many fields, such as information push, medical research, finance, and information security. In the past few years, there were a lot of well studied work in this field, but we are still facing various issues. In this paper, we clearly review the history of deep learning interpretability research and related work. Firstly, we introduce the history of interpretable deep learning from following three aspects: origin of interpretable deep learning, research exploration stage and model construction stage. Then, the research situation is presented from three aspects, namely visual analysis, robust perturbation analysis and sensitivity analysis. The research on the construction of interpretable deep learning model is introduced following four aspects: model agent, logical reasoning, network node association analysis and traditional machine learning model. Moreover, the limitations of current research are analyzed and discussed in this paper. At last, we list the typical applications of the interpretable deep learning and forecast the possible future research directions of this field along with reasonable and suitable suggestions.
-
Keywords:
- artificial intelligence /
- deep learning /
- interpretability /
- neural network /
- visualization
-
-
期刊类型引用(20)
1. 马行坡,闫梦凡,闵洁,殷明. 一种基于“云-边”协同计算的新安全联邦学习方案. 信阳师范大学学报(自然科学版). 2025(01): 66-71 . 百度学术
2. 白静,许建军,张龙昌. 随机供需云环境中应用提供商收益驱动的最优资源协同配置策略. 信息系统学报. 2025(01): 105-127 . 百度学术
3. 何涵,刘鹏,赵亮,王青山. 无人机任务卸载与充电协同优化. 工程科学与技术. 2024(01): 99-109 . 百度学术
4. 朱思峰,蔡江昊,柴争义,孙恩林. 车联网边缘场景下基于免疫算法的计算卸载优化. 吉林大学学报(工学版). 2024(01): 221-231 . 百度学术
5. 陈晶腾,陈芳. 分布式新能源接入的配电网降损技术研究. 自动化与仪器仪表. 2024(06): 291-295 . 百度学术
6. 白静,张龙昌. 云应用提供商收益驱动的最佳云资源配置策略. 计算机集成制造系统. 2024(07): 2495-2505 . 百度学术
7. 冯起,薛喜红,任龙,冯英. 考虑云端距离的科技服务边缘计算资源均衡调度算法. 自动化技术与应用. 2024(08): 95-98+104 . 百度学术
8. 纪雯,杨哲铭,王智,郭斌,沈博. 视觉端边云融合架构:面向超级智慧城市群演进的关键技术. 中国科学:信息科学. 2024(11): 2518-2532 . 百度学术
9. 赵璞,肖人彬. 基于自组织劳动分工的边云协同任务调度与资源缓存算法. 控制与决策. 2023(05): 1352-1362 . 百度学术
10. 唐续豪,刘发贵,王彬,李超,蒋俊,唐泉,陈维明,何凤文. 跨云环境下任务调度综述. 计算机研究与发展. 2023(06): 1262-1275 . 本站查看
11. 原静,孙骏. 基于边缘计算的智能电网数据调度与快速分发方法. 信息与电脑(理论版). 2023(06): 226-229 . 百度学术
12. 刘鲤君,丁红,祁鸿燕,杜丽华,孙艳丽,姜宁. PaaS架构后端管理平台的云边协同调度算法设计. 现代电子技术. 2023(16): 91-96 . 百度学术
13. 徐胜超. 基于混合蛙跳算法的容器云资源低能耗部署方法. 重庆邮电大学学报(自然科学版). 2023(05): 952-959 . 百度学术
14. 何卫刚,王晓敏. 多技术辅助的高可靠矿井通信网络框架. 陕西煤炭. 2023(06): 150-153 . 百度学术
15. 蒋伟进,孙永霞,朱昊冉,陈萍萍,张婉清,陈君鹏. 边云协同计算下基于ST-GCN的监控视频行为识别机制. 南京大学学报(自然科学). 2022(01): 163-174 . 百度学术
16. 周伟,谢志强. 考虑多工序设备权重的资源协同综合调度算法. 电子与信息学报. 2022(05): 1625-1635 . 百度学术
17. 李凌,陈曦,沈维捷,熊汉武,蔡冉冉. 面向电工装备智能监造的边缘缓存策略. 计算机与现代化. 2022(05): 61-67 . 百度学术
18. 关天柱. 基于随机优化的边缘网络任务资源协同传输调度机制. 长江信息通信. 2022(06): 59-61 . 百度学术
19. 邓勇琛,胡忠波,王素贞. 边缘计算环境下的任务调度综述. 河北省科学院学报. 2022(04): 1-7 . 百度学术
20. 王其朝,金光淑,李庆,王锴,杨祖业,王宏. 工业边缘计算研究现状与展望. 信息与控制. 2021(03): 257-274 . 百度学术
其他类型引用(28)
计量
- 文章访问数: 4875
- HTML全文浏览量: 33
- PDF下载量: 3106
- 被引次数: 48