• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于扩展的S-LSTM的文本蕴含识别

胡超文, 邬昌兴, 杨亚连

胡超文, 邬昌兴, 杨亚连. 基于扩展的S-LSTM的文本蕴含识别[J]. 计算机研究与发展, 2020, 57(7): 1481-1489. DOI: 10.7544/issn1000-1239.2020.20190522
引用本文: 胡超文, 邬昌兴, 杨亚连. 基于扩展的S-LSTM的文本蕴含识别[J]. 计算机研究与发展, 2020, 57(7): 1481-1489. DOI: 10.7544/issn1000-1239.2020.20190522
Hu Chaowen, Wu Changxing, Yang Yalian. Extended S-LSTM Based Textual Entailment Recognition[J]. Journal of Computer Research and Development, 2020, 57(7): 1481-1489. DOI: 10.7544/issn1000-1239.2020.20190522
Citation: Hu Chaowen, Wu Changxing, Yang Yalian. Extended S-LSTM Based Textual Entailment Recognition[J]. Journal of Computer Research and Development, 2020, 57(7): 1481-1489. DOI: 10.7544/issn1000-1239.2020.20190522
胡超文, 邬昌兴, 杨亚连. 基于扩展的S-LSTM的文本蕴含识别[J]. 计算机研究与发展, 2020, 57(7): 1481-1489. CSTR: 32373.14.issn1000-1239.2020.20190522
引用本文: 胡超文, 邬昌兴, 杨亚连. 基于扩展的S-LSTM的文本蕴含识别[J]. 计算机研究与发展, 2020, 57(7): 1481-1489. CSTR: 32373.14.issn1000-1239.2020.20190522
Hu Chaowen, Wu Changxing, Yang Yalian. Extended S-LSTM Based Textual Entailment Recognition[J]. Journal of Computer Research and Development, 2020, 57(7): 1481-1489. CSTR: 32373.14.issn1000-1239.2020.20190522
Citation: Hu Chaowen, Wu Changxing, Yang Yalian. Extended S-LSTM Based Textual Entailment Recognition[J]. Journal of Computer Research and Development, 2020, 57(7): 1481-1489. CSTR: 32373.14.issn1000-1239.2020.20190522

基于扩展的S-LSTM的文本蕴含识别

基金项目: 国家自然科学基金项目(61866012);江西省自然科学基金项目(20181BAB202012);江西省教育厅科学技术研究项目(GJJ180329)
详细信息
  • 中图分类号: TP391

Extended S-LSTM Based Textual Entailment Recognition

Funds: This work was supported by the National Natural Science Foundation of China (61866012), the Natural Science Foundation of Jiangxi Province of China (20181BAB202012), and the Science and Technology Research Project of Jiangxi Provincial Education Department (GJJ180329).
  • 摘要: 文本蕴含识别旨在自动判断给定的前提和假设(通常为2个句子)之间是否存在蕴含关系,是自然语言处理领域一项基础但富有挑战的任务.当前,主流的基于深度学习的模型通常分别建模前提和假设的语义表示,而没有把它们看作一个整体;另外,在捕获它们之间的语义关系时,大都没有同时利用句子级别的全局信息和短语级别的局部信息.最近提出的S-LSTM能够同时学习句子和短语的语义表示,在文本分类等任务上取得了较好的效果.基于上述情况,提出了一种基于扩展的S-LSTM的文本蕴含识别模型.一方面,把前提和假设看作一个整体,扩展S-LSTM以同时学习它们的语义表示;另一方面,在建模语义关系时,既利用句子级别的信息又利用短语级别的信息,以此获得更好的语义表示.在英文SNLI数据集和中文CNLI数据集上的实验结果表明:提出的模型取得了比基准模型更好的识别性能.
    Abstract: Text entailment recognition aims at automatically determining whether there is an entailment relationship between the given premise and hypothesis (usually two sentences). It is a basic and challenging task in natural language processing. Current dominant models, which are based on deep learning, usually encode the semantic representations of two sentences separately, instead of considering them as a whole. Besides, most of them do not leverage both the sentence-level global and ngram-level local information when capturing the semantic relationship. The recently proposed S-LSTM can learn semantic representations of a sentence and its ngrams simultaneously, achieving promising performance on tasks such as text classification. Considering the above, a model based on an extended S-LSTM is proposed for textual entailment recognition. On the one hand, S-LSTM is extended to learn semantic representations of the premise and hypothesis simultaneously, which regards them as a whole. On the other hand, to obtain better semantic representation, both the sentence-level and ngram-level information are used to capture the semantic relationships. Experimental results, on the English SNLI dataset and Chinese CNLI dataset, show that the performance of the proposed model is better than baselines.
  • 期刊类型引用(15)

    1. 叶进,谢紫琪,肖庆宇,宋玲,李晓欢. 数据中心网络中基于ELM的流簇大小推理机制. 计算机科学与探索. 2021(02): 261-269 . 百度学术
    2. 林霄,姬硕,岳胜男,孙卫强,胡卫生. 面向跨数据中心网络的节点约束存储转发调度方法. 计算机研究与发展. 2021(02): 319-337 . 本站查看
    3. 王金焱. 异构无线网络多路径流量调度算法研究. 常熟理工学院学报. 2021(02): 70-75 . 百度学术
    4. 董金良,刘小伟,李海江. 基于蚁群优化的通信网络负荷信息分散协调调度. 水电与抽水蓄能. 2021(03): 68-71 . 百度学术
    5. 韩茂玲. 复杂网络大规模数据流均衡调度方法. 成都工业学院学报. 2021(03): 38-42 . 百度学术
    6. 武自强,周建涛,赵大明,柳林. 数据中心基于服务满足度的网络流避让方法. 计算机工程与应用. 2021(19): 116-122 . 百度学术
    7. 时洋 ,文梅 ,费佳伟 ,张春元 . 一种基于DAG的网络流量调度器. 计算机研究与发展. 2021(12): 2798-2810 . 本站查看
    8. 李文信,齐恒,徐仁海,周晓波,李克秋. 数据中心网络流量调度的研究进展与趋势. 计算机学报. 2020(04): 600-617 . 百度学术
    9. 陈珂,刘亚志,王思晗. 基于流量特征的流调度策略研究综述. 计算机应用研究. 2020(10): 2889-2894 . 百度学术
    10. 郑莹,段庆洋,林利祥,游新宇,徐跃东,王新. 深度强化学习在典型网络系统中的应用综述. 无线电通信技术. 2020(06): 603-623 . 百度学术
    11. 柯文龙,王勇,叶苗,陈俊奇. Ceph云存储网络中一种业务优先级区分的多播流调度方法. 通信学报. 2020(11): 40-51 . 百度学术
    12. 李维虎,张顶山,崔慧明,周龙,朱志挺,谢挺. 数据中心网络coflow调度机制结构构建及仿真. 电子测量技术. 2019(10): 78-81 . 百度学术
    13. 康瑾,李革. 面向医院手术排程的智能规划算法研究. 信息技术. 2019(11): 37-41+45 . 百度学术
    14. 孙超. 基于模糊反馈的共享网络远程数据控制仿真. 计算机仿真. 2019(10): 409-412+438 . 百度学术
    15. 王远. 数据中心网络拥塞控制研究综述. 信息工程大学学报. 2019(06): 714-719 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  1177
  • HTML全文浏览量:  3
  • PDF下载量:  344
  • 被引次数: 28
出版历程
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回