• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于多视角RGB-D图像帧数据融合的室内场景理解

李祥攀, 张彪, 孙凤池, 刘杰

李祥攀, 张彪, 孙凤池, 刘杰. 基于多视角RGB-D图像帧数据融合的室内场景理解[J]. 计算机研究与发展, 2020, 57(6): 1218-1226. DOI: 10.7544/issn1000-1239.2020.20190578
引用本文: 李祥攀, 张彪, 孙凤池, 刘杰. 基于多视角RGB-D图像帧数据融合的室内场景理解[J]. 计算机研究与发展, 2020, 57(6): 1218-1226. DOI: 10.7544/issn1000-1239.2020.20190578
Li Xiangpan, Zhang Biao, Sun Fengchi, Liu Jie. Indoor Scene Understanding by Fusing Multi-View RGB-D Image Frames[J]. Journal of Computer Research and Development, 2020, 57(6): 1218-1226. DOI: 10.7544/issn1000-1239.2020.20190578
Citation: Li Xiangpan, Zhang Biao, Sun Fengchi, Liu Jie. Indoor Scene Understanding by Fusing Multi-View RGB-D Image Frames[J]. Journal of Computer Research and Development, 2020, 57(6): 1218-1226. DOI: 10.7544/issn1000-1239.2020.20190578
李祥攀, 张彪, 孙凤池, 刘杰. 基于多视角RGB-D图像帧数据融合的室内场景理解[J]. 计算机研究与发展, 2020, 57(6): 1218-1226. CSTR: 32373.14.issn1000-1239.2020.20190578
引用本文: 李祥攀, 张彪, 孙凤池, 刘杰. 基于多视角RGB-D图像帧数据融合的室内场景理解[J]. 计算机研究与发展, 2020, 57(6): 1218-1226. CSTR: 32373.14.issn1000-1239.2020.20190578
Li Xiangpan, Zhang Biao, Sun Fengchi, Liu Jie. Indoor Scene Understanding by Fusing Multi-View RGB-D Image Frames[J]. Journal of Computer Research and Development, 2020, 57(6): 1218-1226. CSTR: 32373.14.issn1000-1239.2020.20190578
Citation: Li Xiangpan, Zhang Biao, Sun Fengchi, Liu Jie. Indoor Scene Understanding by Fusing Multi-View RGB-D Image Frames[J]. Journal of Computer Research and Development, 2020, 57(6): 1218-1226. CSTR: 32373.14.issn1000-1239.2020.20190578

基于多视角RGB-D图像帧数据融合的室内场景理解

基金项目: 国家自然科学基金项目(61873327)
详细信息
  • 中图分类号: TP391.41

Indoor Scene Understanding by Fusing Multi-View RGB-D Image Frames

Funds: This work was supported by the National Natural Science Foundation of China (61873327).
  • 摘要: 对于智能机器人来说,正确地理解环境是一项非常重要且充满挑战性的能力,从而成为机器人学领域一个关键问题.随着服务机器人进入家庭成为趋势,让机器人能够依靠自身搭载的传感器和场景理解算法,以自主、可靠的方式感知并理解其所处的环境,识别环境中的各类物体及其相互关系,并建立环境模型,成为自主完成任务和实现人-机器人智能交互的前提.在规模较大的室内空间中,由于机器人常用的RGB-D(RGB depth)视觉传感器(同时获取彩色图像和深度信息)视野有限,使之难以直接获取包含整个区域的单帧图像,但机器人能够运动到不同位置,采集多种视角的图像数据,这些数据总体上能够覆盖整个场景.在此背景下,提出了基于多视角RGB-D图像帧信息融合的室内场景理解算法,在单帧RGB-D图像上进行物体检测和物体关系提取,在多帧RGB-D图像上进行物体实例检测,同时构建对应整个场景的物体关系拓扑图模型.通过对RGB-D图像帧进行划分,提取图像单元的颜色直方图特征,并提出基于最长公共子序列的跨帧物体实例检测方法,确定多帧图像之间的物体对应关联,解决了RGB-D摄像机视角变化影响图像帧融合的问题.最后,在NYUv2(NYU depth dataset v2)数据集上验证了本文算法的有效性.
    Abstract: For intelligent robots, it’s an important and challenging ability to understand environment correctly, and so, scene understanding becomes a key problem in robotics community. In the future, more and more families will have service robots living with them. Family robots need to sense and understand surrounding environment reliably in an autonomous way, depending on their on-board sensors and scene understanding algorithms. Specifically, a running robot has to recognize various objects and the relations between them to autonomously implement tasks and perform intelligent man-robot interaction. Usually, RGB-D(RGB depth) visual sensors commonly used by robots to capture color and depth information have limited field of view, and so it is often difficult to directly get the single image of the whole scene in large-scale indoor spaces. Fortunately, robots can move to different locations and get more RGB-D images from multiple perspectives which can cover the whole scene in total. In this situation, we propose an indoor scene understanding algorithm based on information fusion of multi-view RGB-D images. This algorithm detects objects and extracts object relationship on single RGB-D image, then detects instance-level objects on multiple RGB-D image frames, and constructs object relation oriented topological map as the model of the whole scene. By dividing the RGB-D images into cells, then extracting color histogram features from the cells, we manage to find and associate the same objects in different frames using the object instance detection algorithm based on the longest common subsequence, overcoming the adverse influence on image fusion caused by RGB-D camera’s viewpoint changes. Finally, the experimental results on the NYUv2 dataset demonstrate the effectiveness of the proposed algorithm.
  • 期刊类型引用(27)

    1. 顾敏,徐雅男,王辛迪,花敏,周雯. 多用户MIMO-MEC网络中基于APSO的任务卸载研究. 无线电工程. 2024(03): 711-718 . 百度学术
    2. 王斐然,郭昕阳,张峰. 基于边缘计算的输电线路巡检设备协同调配研究. 自动化仪表. 2024(05): 123-126 . 百度学术
    3. 史晓蒙,吕晓鹏,魏健康,王凌. 基于算法组合的端边云任务处理方法. 价值工程. 2024(36): 108-112 . 百度学术
    4. 向朝参,程文辉,张昭,焦贤龙,屈毓锛,陈超,戴海鹏. 基于边缘智能计算的城市交通感知数据自适应恢复. 计算机研究与发展. 2023(03): 619-634 . 本站查看
    5. 邵梁,何星舟,尚俊娜. 边缘计算中利用改进型遗传算法的任务卸载策略. 计算机应用与软件. 2023(11): 48-57 . 百度学术
    6. 高仕斌,刘帝洋,韦晓广,康高强,罗嘉明,雷杰宇. 基于数字孪生网络的牵引供电智能运维体系与应用架构. 铁道学报. 2023(12): 1-15 . 百度学术
    7. 张彦虎,鄢丽娟,马志愤,张彦军. 一种适用于多任务多资源移动边缘计算环境下的改进粒子群算力卸载算法. 计算机与现代化. 2022(05): 54-60+67 . 百度学术
    8. 刘春林,秦进. 面向5G网络的移动边缘计算节点部署算法设计. 计算机仿真. 2022(12): 436-439+473 . 百度学术
    9. 张开强,蒋从锋,程小兰,贾刚勇,张纪林,万健. 多分辨率下资源感知的图像目标自适应缩放检测. 计算机科学. 2021(04): 180-186 . 百度学术
    10. 乐光学,陈光鲁,卢敏,杨晓慧,刘建华,黄淳岚,杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法. 计算机研究与发展. 2021(09): 2025-2039 . 本站查看
    11. 苏命峰,王国军,李仁发. 边云协同计算中基于预测的资源部署与任务调度优化. 计算机研究与发展. 2021(11): 2558-2570 . 本站查看
    12. 贾觐,暴占彪. 改进GA的边缘计算任务卸载与资源分配策略. 计算机工程与设计. 2021(11): 3009-3017 . 百度学术
    13. 汪小威,林宁,胡玉平. 移动边缘计算中利用BPSO的任务卸载策略. 计算机工程与设计. 2021(12): 3333-3341 . 百度学术
    14. 尹高,石远明. 移动边缘网络中深度学习任务卸载方案. 重庆邮电大学学报(自然科学版). 2020(01): 38-46 . 百度学术
    15. 丁雪乾,薛建彬. 边缘计算下基于Lyapunov优化的系统资源分配策略. 微电子学与计算机. 2020(02): 63-68 . 百度学术
    16. 白昱阳,黄彦浩,陈思远,张俊,李柏青,王飞跃. 云边智能:电力系统运行控制的边缘计算方法及其应用现状与展望. 自动化学报. 2020(03): 397-410 . 百度学术
    17. 乐光学,戴亚盛,杨晓慧,刘建华,游真旭,朱友康. 边缘计算可信协同服务策略建模. 计算机研究与发展. 2020(05): 1080-1102 . 本站查看
    18. 盛津芳,滕潇雨,李伟民,王斌. 移动边缘计算中基于改进拍卖模型的计算卸载策略. 计算机应用研究. 2020(06): 1688-1692 . 百度学术
    19. 胡锦天,王高才,徐晓桐. 移动边缘计算中具有能耗优化的任务迁移策略. 计算机科学. 2020(06): 260-265 . 百度学术
    20. 周振宇,陈亚鹏,潘超,赵雄文,张磊,汪中原. 面向智能电力巡检的高可靠低时延移动边缘计算技术. 高电压技术. 2020(06): 1895-1902 . 百度学术
    21. 吕洁娜,张家波,张祖凡,甘臣权. 移动边缘计算卸载策略综述. 小型微型计算机系统. 2020(09): 1866-1877 . 百度学术
    22. 张伟. 边缘计算的任务迁移机制研究. 软件导刊. 2020(09): 48-53 . 百度学术
    23. 路亚. MEC多服务器启发式联合任务卸载和资源分配策略. 计算机应用与软件. 2020(10): 77-84 . 百度学术
    24. 方加娟,李凯. 基于边缘云和移动辅助设备的计算卸载优化方案. 计算机应用与软件. 2020(12): 6-12 . 百度学术
    25. 危泽华,曾玲玲. 基于Stackelberg博弈论的边缘计算卸载决策方法. 数学的实践与认识. 2019(11): 91-100 . 百度学术
    26. 居晓琴. 移动边缘计算的QoE视频缓存方法. 电脑与信息技术. 2019(05): 44-47 . 百度学术
    27. 乐光学,戴亚盛,杨晓慧,朱友康,游真旭,刘建生. 边缘计算多约束可信协同任务迁移策略. 电信科学. 2019(11): 36-50 . 百度学术

    其他类型引用(65)

计量
  • 文章访问数:  1199
  • HTML全文浏览量:  7
  • PDF下载量:  276
  • 被引次数: 92
出版历程
  • 发布日期:  2020-05-31

目录

    /

    返回文章
    返回