• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于Jacobi ADMM的传感网分布式压缩感知数据重构算法

李国瑞, 孟婕, 彭三城, 王聪

李国瑞, 孟婕, 彭三城, 王聪. 基于Jacobi ADMM的传感网分布式压缩感知数据重构算法[J]. 计算机研究与发展, 2020, 57(6): 1284-1291. DOI: 10.7544/issn1000-1239.2020.20190587
引用本文: 李国瑞, 孟婕, 彭三城, 王聪. 基于Jacobi ADMM的传感网分布式压缩感知数据重构算法[J]. 计算机研究与发展, 2020, 57(6): 1284-1291. DOI: 10.7544/issn1000-1239.2020.20190587
Li Guorui, Meng Jie, Peng Sancheng, Wang Cong. A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks[J]. Journal of Computer Research and Development, 2020, 57(6): 1284-1291. DOI: 10.7544/issn1000-1239.2020.20190587
Citation: Li Guorui, Meng Jie, Peng Sancheng, Wang Cong. A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks[J]. Journal of Computer Research and Development, 2020, 57(6): 1284-1291. DOI: 10.7544/issn1000-1239.2020.20190587
李国瑞, 孟婕, 彭三城, 王聪. 基于Jacobi ADMM的传感网分布式压缩感知数据重构算法[J]. 计算机研究与发展, 2020, 57(6): 1284-1291. CSTR: 32373.14.issn1000-1239.2020.20190587
引用本文: 李国瑞, 孟婕, 彭三城, 王聪. 基于Jacobi ADMM的传感网分布式压缩感知数据重构算法[J]. 计算机研究与发展, 2020, 57(6): 1284-1291. CSTR: 32373.14.issn1000-1239.2020.20190587
Li Guorui, Meng Jie, Peng Sancheng, Wang Cong. A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks[J]. Journal of Computer Research and Development, 2020, 57(6): 1284-1291. CSTR: 32373.14.issn1000-1239.2020.20190587
Citation: Li Guorui, Meng Jie, Peng Sancheng, Wang Cong. A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks[J]. Journal of Computer Research and Development, 2020, 57(6): 1284-1291. CSTR: 32373.14.issn1000-1239.2020.20190587

基于Jacobi ADMM的传感网分布式压缩感知数据重构算法

基金项目: 国家自然科学基金项目(61876205);中央高校基本科研业务费专项资金(N172304022);广州市科技计划项目(201804010433);语言工程与计算实验室招标课题(LEC2017ZBKT001)
详细信息
  • 中图分类号: TP393

A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks

Funds: This work was supported by the National Natural Science Foundation of China (61876205), the Fundamental Research Funds for the Central Universities (N172304022), the Science and Technology Plan Project of Guangzhou (201804010433), and the Bidding Project of Laboratory of Language Engineering and Computing (LEC2017ZBKT001).
  • 摘要: 针对无线传感网中分布式数据收集及应用,采用分布式压缩感知理论中的JSM-1 (joint sparse model-1)模型,提出了一种基于Jacobi ADMM (alternating direction method of multipliers)的分布式压缩感知数据重构算法.该算法通过在簇头节点间交换公共信息以挖掘关联数据集的公共部分,并在各个簇头节点内部更新各自的独立部分,从而实现无线传感网中相关感知数据的分布式压缩重构.首先,将无线传感网中的数据收集问题抽象为一个分布式优化问题.然后,为了能够有效地解决分布式计算过程中产生的不收敛问题,在优化目标函数中引入了近似项,从而使得子优化问题具有严格凸性,并利用交替方向乘子法求解压缩感知数据的重构问题.最后,分别利用合成数据集和真实数据集进行验证.实验结果表明:与现有其他数据重构算法相比,基于Jacobi ADMM的分布式压缩感知数据重构算法具有更高的数据重构精度.
    Abstract: Considering the application scenario of decentralized data collection in wireless sensor networks (WSNs), a distributed data reconstruction algorithm based on Jacobi ADMM (alternating direction method of multipliers) for compressed sensing is proposed by adopting the JSM-1 (joint sparse model-1) model in the distributed compressed sensing (DCS) theory. Through exchanging the common information among cluster heads to determine the common components in the correlated sensed data and update the innovation components in each cluster head, the compressed sensed data in WSNs are reconstructed in a distributed way. The data collection operation in wireless sensor networks is firstly abstracted as a distributed optimization problem. In order to avoid non-convergence in the distributed data reconstruction process, a proximal component is then introduced into the aforementioned optimization problem with the goal of converting the sub-problem of the optimization objective function into its strictly convex form. After that, the ADMM method is utilized to solve the data reconstruction problem. Both the synthetic dataset and the real world datasets are used in the experiments to verify the performance of the proposed algorithm. Experimental results show that the proposed data reconstruction algorithm can provide higher data reconstruction accuracy than the state of the art data reconstruction algorithms.
  • 期刊类型引用(7)

    1. 李曼文,张月琴,张晨威,张泽华. 异质图嵌入的地理不敏感时空兴趣点推荐方法. 计算机科学与探索. 2024(03): 755-767 . 百度学术
    2. 金柯君,于洪涛,吴翼腾,李邵梅,张建朋,郑洪浩. 改进的基于奇异值分解的图卷积网络防御方法. 计算机应用. 2023(05): 1511-1517 . 百度学术
    3. 王小红,刘琴. 基于深度迁移的有向加权网络节点重叠检测. 计算机仿真. 2023(09): 492-496 . 百度学术
    4. 金柯君,于洪涛,李邵梅,张建朋. 基于注意力机制的图卷积网络防御方法. 信息工程大学学报. 2023(06): 718-724 . 百度学术
    5. 杨旭华,王磊,叶蕾,张端,周艳波,龙海霞. 基于节点相似性和网络嵌入的复杂网络社区发现算法. 计算机科学. 2022(03): 121-128 . 百度学术
    6. 刘志鑫,张泽华,张杰. 基于多层次多视角的图注意力Top-N推荐方法. 计算机科学. 2021(04): 104-110 . 百度学术
    7. 陈晋音,黄国瀚,张敦杰,张旭鸿,纪守领. 一种面向图神经网络的图重构防御方法. 计算机研究与发展. 2021(05): 1075-1091 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  1004
  • HTML全文浏览量:  3
  • PDF下载量:  331
  • 被引次数: 11
出版历程
  • 发布日期:  2020-05-31

目录

    /

    返回文章
    返回