• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

AccSMBO:一种基于超参梯度和元学习的SMBO加速算法

程大宁, 张汉平, 夏粉, 李士刚, 袁良, 张云泉

程大宁, 张汉平, 夏粉, 李士刚, 袁良, 张云泉. AccSMBO:一种基于超参梯度和元学习的SMBO加速算法[J]. 计算机研究与发展, 2020, 57(12): 2596-2609. DOI: 10.7544/issn1000-1239.2020.20190670
引用本文: 程大宁, 张汉平, 夏粉, 李士刚, 袁良, 张云泉. AccSMBO:一种基于超参梯度和元学习的SMBO加速算法[J]. 计算机研究与发展, 2020, 57(12): 2596-2609. DOI: 10.7544/issn1000-1239.2020.20190670
Cheng Daning, Zhang Hanping, Xia Fen, Li Shigang, Yuan Liang, Zhang Yunquan. AccSMBO: Using Hyperparameters Gradient and Meta-Learning to Accelerate SMBO[J]. Journal of Computer Research and Development, 2020, 57(12): 2596-2609. DOI: 10.7544/issn1000-1239.2020.20190670
Citation: Cheng Daning, Zhang Hanping, Xia Fen, Li Shigang, Yuan Liang, Zhang Yunquan. AccSMBO: Using Hyperparameters Gradient and Meta-Learning to Accelerate SMBO[J]. Journal of Computer Research and Development, 2020, 57(12): 2596-2609. DOI: 10.7544/issn1000-1239.2020.20190670
程大宁, 张汉平, 夏粉, 李士刚, 袁良, 张云泉. AccSMBO:一种基于超参梯度和元学习的SMBO加速算法[J]. 计算机研究与发展, 2020, 57(12): 2596-2609. CSTR: 32373.14.issn1000-1239.2020.20190670
引用本文: 程大宁, 张汉平, 夏粉, 李士刚, 袁良, 张云泉. AccSMBO:一种基于超参梯度和元学习的SMBO加速算法[J]. 计算机研究与发展, 2020, 57(12): 2596-2609. CSTR: 32373.14.issn1000-1239.2020.20190670
Cheng Daning, Zhang Hanping, Xia Fen, Li Shigang, Yuan Liang, Zhang Yunquan. AccSMBO: Using Hyperparameters Gradient and Meta-Learning to Accelerate SMBO[J]. Journal of Computer Research and Development, 2020, 57(12): 2596-2609. CSTR: 32373.14.issn1000-1239.2020.20190670
Citation: Cheng Daning, Zhang Hanping, Xia Fen, Li Shigang, Yuan Liang, Zhang Yunquan. AccSMBO: Using Hyperparameters Gradient and Meta-Learning to Accelerate SMBO[J]. Journal of Computer Research and Development, 2020, 57(12): 2596-2609. CSTR: 32373.14.issn1000-1239.2020.20190670

AccSMBO:一种基于超参梯度和元学习的SMBO加速算法

基金项目: 国家自然科学基金项目(61432018,61521092,61272136,61521092,61502450);国家重点研发计划项目(2016YFB0200803);北京自然科学基金项目(L1802053)
详细信息
  • 中图分类号: TP181; TP302.7

AccSMBO: Using Hyperparameters Gradient and Meta-Learning to Accelerate SMBO

Funds: This work was supported by the National Natural Science Foundation of China (61432018, 61521092, 61272136, 61521092, 61502450), the National Key Research and Development Program of China (2016YFB0200803), and the Beijing Natural Science Foundation (L1802053).
  • 摘要: 为了利用最佳超参高概率范围和超参梯度,提出了加速的序列模型优化算法(sequential model-based optimization algorithms, SMBO)——AccSMBO算法.AccSMBO使用了具有良好抗噪能力的基于梯度的多核高斯过程回归方法,利用元学习数据集的meta-acquisition函数.AccSMBO自然对应的并行算法则使用了基于元学习数据集的并行算法资源调度方案.基于梯度的多核高斯过程回归可以避免超参梯度噪音对拟合高斯过程的影响,加快构建较好超参-效果模型的速度.meta-acquisition函数通过读取元学习数据集,总结最佳超参高概率范围,加快最优超参搜索.在AccSMBO自然对应的并行算法中,并行资源调度方法使更多的并行计算资源用于计算最佳超参高概率范围中的超参,更快探索最佳超参高概率范围.上述3个技术充分利用超参梯度和最佳超参高概率范围加速SMBO算法.在实验中,相比于基于传统的SMBO算法实现的SMAC(sequential model-based algorithm configuration)算法、基于梯度下降的HOAG(hyperparameter optimization with approximate gradient)算法和常用的随机搜索算法,AccSMBO使用最少的资源找到了效果最好的超参.
    Abstract: Current machine learning models require numbers of hyperparameters. Adjusting those hyperparameters is an exhausting job. Thus, hyperparameters optimization algorithms play important roles in machine learning application. In hyperparameters optimization algorithms, sequential model-based optimization algorithms (SMBO) and parallel SMBO algorithms are state-of-the-art hyperpara-meter optimization methods. However, (parallel) SMBO algorithms do not take the best hyperpara-meters high possibility range and gradients into considerasion. It is obvious that best hyperparameters high possibility range and hyperparameter gradients can accelerate traditional hyperparameters optimization algorithms. In this paper, we accelerate the traditional SMBO method and name our method as AccSMBO. In AccSMBO, we build a novel gradient-based multikernel Gaussian process. Our multikernel Gaussian process has a good generalization ability which reduces the gradient noise influence on SMBO algorithm. And we also design meta-acquisition function and parallel resource allocation plan which encourage that (parallel) SMBO puts more attention on the best hyperpara-meters high possibility range. In theory, our method ensures that all hyperparameter gradient information and the best hyperparameters high possibility range information are fully used. In L2 norm regularised logistic loss function experiments, on different scales datasets: small-scale dataset Pc4, middle-scale dataset Rcv1, large-scale dataset Real-sim, compared with state-of-the-art gradient based algorithm: HOAG and state-of-the-art SMBO algorithm: SMAC, our method exhibits the best performance.
  • 期刊类型引用(8)

    1. 张宇姣,徐健,吴迪. 基于图表示学习的知识图谱时序推理模型. 济南大学学报(自然科学版). 2025(02): 272-277 . 百度学术
    2. 陆佳炜,王小定,朱昊天,程振波,肖刚. 一种融合实体图上下文的三维旋转知识图谱表示学习. 小型微型计算机系统. 2023(01): 124-131 . 百度学术
    3. 陈小英,熊盛武,王盛,张士伟. 基于上下文时序关联的时序知识图谱嵌入方法. 武汉大学学报(理学版). 2023(02): 249-257 . 百度学术
    4. 卢菁,陈婉璐,刘丛. KGU-SP:一种挖掘标准模式的知识图谱更新方法. 小型微型计算机系统. 2023(06): 1177-1183 . 百度学术
    5. 魏飞鸣,许倩倩,顾网平,李永晨. 知识图谱在探测与识别领域中的应用分析. 制导与引信. 2023(04): 1-8+28 . 百度学术
    6. 马昂,于艳华,杨胜利,石川,李劼,蔡修秀. 基于强化学习的知识图谱综述. 计算机研究与发展. 2022(08): 1694-1722 . 本站查看
    7. 宁原隆,周刚,卢记仓,杨大伟,张田. 一种融合关系路径与实体描述信息的知识图谱表示学习方法. 计算机研究与发展. 2022(09): 1966-1979 . 本站查看
    8. 夏毅,兰明敬,陈晓慧,罗军勇,周刚,何鹏. 可解释的知识图谱推理方法综述. 网络与信息安全学报. 2022(05): 1-25 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  860
  • HTML全文浏览量:  1
  • PDF下载量:  301
  • 被引次数: 24
出版历程
  • 发布日期:  2020-11-30

目录

    /

    返回文章
    返回