• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

面向云存储的带关键词搜索的公钥加密方案

郭丽峰, 李智豪, 胡磊

郭丽峰, 李智豪, 胡磊. 面向云存储的带关键词搜索的公钥加密方案[J]. 计算机研究与发展, 2020, 57(7): 1404-1414. DOI: 10.7544/issn1000-1239.2020.20190671
引用本文: 郭丽峰, 李智豪, 胡磊. 面向云存储的带关键词搜索的公钥加密方案[J]. 计算机研究与发展, 2020, 57(7): 1404-1414. DOI: 10.7544/issn1000-1239.2020.20190671
Guo Lifeng, Li Zhihao, Hu Lei. Efficient Public Encryption Scheme with Keyword Search for Cloud Storage[J]. Journal of Computer Research and Development, 2020, 57(7): 1404-1414. DOI: 10.7544/issn1000-1239.2020.20190671
Citation: Guo Lifeng, Li Zhihao, Hu Lei. Efficient Public Encryption Scheme with Keyword Search for Cloud Storage[J]. Journal of Computer Research and Development, 2020, 57(7): 1404-1414. DOI: 10.7544/issn1000-1239.2020.20190671
郭丽峰, 李智豪, 胡磊. 面向云存储的带关键词搜索的公钥加密方案[J]. 计算机研究与发展, 2020, 57(7): 1404-1414. CSTR: 32373.14.issn1000-1239.2020.20190671
引用本文: 郭丽峰, 李智豪, 胡磊. 面向云存储的带关键词搜索的公钥加密方案[J]. 计算机研究与发展, 2020, 57(7): 1404-1414. CSTR: 32373.14.issn1000-1239.2020.20190671
Guo Lifeng, Li Zhihao, Hu Lei. Efficient Public Encryption Scheme with Keyword Search for Cloud Storage[J]. Journal of Computer Research and Development, 2020, 57(7): 1404-1414. CSTR: 32373.14.issn1000-1239.2020.20190671
Citation: Guo Lifeng, Li Zhihao, Hu Lei. Efficient Public Encryption Scheme with Keyword Search for Cloud Storage[J]. Journal of Computer Research and Development, 2020, 57(7): 1404-1414. CSTR: 32373.14.issn1000-1239.2020.20190671

面向云存储的带关键词搜索的公钥加密方案

基金项目: 山西省自然科学基金面上项目(201901D111029);山西省重点研发项目(国际科技合作方面)(201903D421003);国家自然科学基金项目(61202365,61872226,61732021);山西省自然科学基金项目(201701D121052);山西省高等学校科技创新项目(2019L0114)
详细信息
  • 中图分类号: TP309

Efficient Public Encryption Scheme with Keyword Search for Cloud Storage

Funds: This work was supported by the General Program of the Natural Science Foundation of Shanxi Province of China (201901D111029), the Key Reseach and Development Program (International Science and Technology Cooperation Project) of Shanxi Province of China (201903D421003), the National Natural Science Foundation of China (61202365, 61872226, 61732021), the Natural Science Foundation of Shanxi Province of China (201701D121052), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (STIP) (2019L0114).
  • 摘要: 广泛应用于云存储环境的带关键词搜索的公钥加密体制(public key encryption with keyword search, PEKS)不仅能保证所存储数据的隐私,而且具有搜索功能. 针对抵制内部离线关键词猜测攻击问题,目前的解决方案是通过引入发送者的私钥,使得密文实现认证功能,从而抵制内部的离线关键词猜测攻击,但是此方法使得接收者必须事先指定发送者,这不符合实际要求. 为此,提出一个高效的带关键词搜索的公钥加密方案而且在标准模型下可证明安全. 该方案有3个优势:1)通过引入发送者和服务器的身份,实现了抵制内部和外部离线关键词猜测攻击,而且不需要接收者指定发送者;2)通过引入服务器的公私钥对,陷门可以在公开信道传输;3)因为任何人都可验证关键词密文的正确性,该方案能够抵制选择关键词密文攻击.
    Abstract: Public key encryption with keyword search (PEKS) is a promise cryptography technique in cloud storage which not only can ensure the privacy of stored data but also has search function. In order to resist internal off-line keyword guessing attack, the current solution is to introduce the sender’s secret key and public key to make the keyword ciphertext to realize authentication function. But in these schemes, the receiver must delegate the sender in advance. This situation does not meet the actual requirements that the receiver does not want to delegate the sender. In order to satisfy these applications, we propose an efficient PEKS scheme and prove its security in the standard model. Our PEKS scheme achieves three advantages: Firstly, by introducing the identity of the sender and the server, our scheme can resist the internal and external off-line keyword guessing attack. Furthermore, the scheme doesn’t need to delegate the sender; secondly, by introducing the server’s private key and public key, the trapdoor can be transmitted by a public channel; thirdly, because anyone can verify the correctness of the keyword search ciphertext of keyword search, the scheme can resist chosen keyword ciphertext attack.
  • 期刊类型引用(11)

    1. 袁子轩,张峰,许岗,魏光辉,石永强. 融合MAML和TGAT的机会网络动态链路预测模型. 小型微型计算机系统. 2024(12): 2957-2963 . 百度学术
    2. 曹志威,樊志杰,王青杨,韩伟力,李欣. 一种降噪自编码器的复杂网络链路预测算法. 小型微型计算机系统. 2023(03): 665-672 . 百度学术
    3. 刘林峰,于子兴,祝贺. 基于门控循环单元的移动社会网络链路预测方法. 计算机研究与发展. 2023(03): 705-716 . 本站查看
    4. 王曙燕,巩婧怡. 融合节点标签与强弱关系的链路预测算法. 计算机工程与应用. 2022(18): 71-77 . 百度学术
    5. 张瑾,朱桂祥,王宇琛,郑烁佳,陈镜潞. 基于异质图表达学习的跨境电商推荐模型. 电子与信息学报. 2022(11): 4008-4017 . 百度学术
    6. 唐明虎. 基于多种信息组合模式的非负矩阵分解链路预测模型. 计算机应用研究. 2021(05): 1393-1397+1408 . 百度学术
    7. 顾秋阳,吴宝,池仁勇. 基于高阶路径相似度的复杂网络链路预测方法. 通信学报. 2021(07): 61-69 . 百度学术
    8. 许爽,李淼磊. 基于子图特征的科学家合作网络链路预测. 大连民族大学学报. 2020(01): 51-63 . 百度学术
    9. 张尚田,陈光,邱天. 基于融合特征的LSTM评分预测. 计算机与现代化. 2020(03): 49-53+59 . 百度学术
    10. 顾秋阳,琚春华,吴功兴. 基于子图演化与改进蚁群优化算法的社交网络链路预测方法. 通信学报. 2020(12): 21-35 . 百度学术
    11. 李琦,王智强,梁吉业. 基于PU学习的链接预测方法. 模式识别与人工智能. 2019(09): 793-799 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  1116
  • HTML全文浏览量:  4
  • PDF下载量:  371
  • 被引次数: 29
出版历程
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回