• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

教育大数据中认知跟踪模型研究进展

胡学钢, 刘菲, 卜晨阳

胡学钢, 刘菲, 卜晨阳. 教育大数据中认知跟踪模型研究进展[J]. 计算机研究与发展, 2020, 57(12): 2523-2546. DOI: 10.7544/issn1000-1239.2020.20190767
引用本文: 胡学钢, 刘菲, 卜晨阳. 教育大数据中认知跟踪模型研究进展[J]. 计算机研究与发展, 2020, 57(12): 2523-2546. DOI: 10.7544/issn1000-1239.2020.20190767
Hu Xuegang, Liu Fei, Bu Chenyang. Research Advances on Knowledge Tracing Models in Educational Big Data[J]. Journal of Computer Research and Development, 2020, 57(12): 2523-2546. DOI: 10.7544/issn1000-1239.2020.20190767
Citation: Hu Xuegang, Liu Fei, Bu Chenyang. Research Advances on Knowledge Tracing Models in Educational Big Data[J]. Journal of Computer Research and Development, 2020, 57(12): 2523-2546. DOI: 10.7544/issn1000-1239.2020.20190767
胡学钢, 刘菲, 卜晨阳. 教育大数据中认知跟踪模型研究进展[J]. 计算机研究与发展, 2020, 57(12): 2523-2546. CSTR: 32373.14.issn1000-1239.2020.20190767
引用本文: 胡学钢, 刘菲, 卜晨阳. 教育大数据中认知跟踪模型研究进展[J]. 计算机研究与发展, 2020, 57(12): 2523-2546. CSTR: 32373.14.issn1000-1239.2020.20190767
Hu Xuegang, Liu Fei, Bu Chenyang. Research Advances on Knowledge Tracing Models in Educational Big Data[J]. Journal of Computer Research and Development, 2020, 57(12): 2523-2546. CSTR: 32373.14.issn1000-1239.2020.20190767
Citation: Hu Xuegang, Liu Fei, Bu Chenyang. Research Advances on Knowledge Tracing Models in Educational Big Data[J]. Journal of Computer Research and Development, 2020, 57(12): 2523-2546. CSTR: 32373.14.issn1000-1239.2020.20190767

教育大数据中认知跟踪模型研究进展

基金项目: 国家重点研发计划项目(2016YFB1000901);国家自然科学基金项目(61806065);中央高校基本科研业务费专项资金项目(JZ2020HGQA0186)
详细信息
  • 中图分类号: TP391

Research Advances on Knowledge Tracing Models in Educational Big Data

Funds: This work was supported by the National Key Research and Development Program of China (2016YFB1000901), the National Natural Science Foundation of China (61806065), and the Fundamental Research Funds for the Central Universities (JZ2020HGQA0186).
  • 摘要: 教育信息化的不断推进和在线教育的蓬勃发展产生了海量的教育数据,如何挖掘和分析教育大数据成为了教育领域和大数据知识工程领域亟待解决的问题.认知跟踪模型通过获取学生作答习题的得分表现,追踪学生随时间变化的认知状态,从而预测学生在未来时间的作答表现.对教育大数据中认知跟踪模型进行了回顾、分析和展望.首先从模型的原理、步骤和方法等维度详细介绍了认知跟踪模型,包括基于贝叶斯方法和深度学习方法2类认知跟踪模型.同时,从学生作答表现预测、认知状态评估、心理因素分析、习题序列分析和编程练习5个方面阐述认知跟踪模型的应用情景.最后,以经典的贝叶斯认知跟踪模型和深度认知跟踪模型为例分析了2类模型的优缺点,并探讨和展望认知跟踪模型未来可能的研究方向.
    Abstract: With the in-depth advancement of informational education and the rapid development of online education, a large amount of fragmented educational data are generated during the learning process of students. How to mine and analyze these educational big data has become an urgent problem in the education and the knowledge engineering with big data fields. As for the dynamic education data, knowledge tracing models trace the cognitive status of students over time by analyzing the students’ exercising data generated in the learning process, so as to predict the exercising performance of students in the future time. In this paper, knowledge tracing models in educational big data are reviewed, analyzed, and discussed. Firstly, knowledge tracing models are introduced in detail from the perspective of their principles, steps, and model variants, including two mainstream knowledge tracing models based on Bayesian methods and deep learning methods. Then, the application scenarios of knowledge tracing models are explained from five aspects: student performance prediction, cognitive state assessment, psychological factor analysis, exercise sequence, and programming practice. The strengths and weaknesses in Bayesian knowledge tracing models and Deep Knowledge Tracing models are discussed through the two classic models BKT and DKT. Finally, some future directions of knowledge tracing models are given.
  • 期刊类型引用(9)

    1. 臧洁,任旭,冯艳爽,王妍,肖萍,鲁锦涛. 一种干扰系数自探测的网络事件选取方法. 小型微型计算机系统. 2024(03): 763-768 . 百度学术
    2. 路苗,门可,马永红,张海瑞,冯彦成. 基于SIS模型的群体社交网络舆情演化仿真. 吉林大学学报(信息科学版). 2023(01): 106-111 . 百度学术
    3. 马帅,刘建伟,左信. 图神经网络综述. 计算机研究与发展. 2022(01): 47-80 . 本站查看
    4. 夏一雪,张立红,何巍,张双狮. 自治线性风险作用下网络舆情演化建模与仿真研究. 情报杂志. 2022(05): 92-98 . 百度学术
    5. 易杰,曹腾飞,黄明峰,黄肖翰,张子震. 基于时间编码LSTM的高校舆情热点趋势预测研究. 大数据. 2022(05): 124-138 . 百度学术
    6. 张杨,廉吉庆,张扬,高德毅. 国内网络舆情情感研究热点分析. 网络安全与数据治理. 2022(07): 47-55 . 百度学术
    7. 徐缤荣. 融媒体背景下社会热点新闻舆情传播控制模型构建. 微型电脑应用. 2022(10): 149-152 . 百度学术
    8. 臧洁,任旭. 考虑兴趣偏好和多事件影响的网络事件推演模型研究. 辽宁大学学报(自然科学版). 2022(04): 298-306 . 百度学术
    9. 赵剑,董文华,史丽娟,匡哲君,毕京晓,王晢宇,强文倩. 针对突发公共事件的舆情监测与可视化分析. 吉林大学学报(信息科学版). 2021(06): 712-719 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  2215
  • HTML全文浏览量:  6
  • PDF下载量:  1665
  • 被引次数: 14
出版历程
  • 发布日期:  2020-11-30

目录

    /

    返回文章
    返回