A Component-Level Dynamic Power-Aware Energy-Saving Mechanism for Backbone Networks
-
摘要: 随着互联网流量逐年递增,网络功耗正以惊人的速度攀升,由此激增的碳足迹导致的温室效应等环境问题也引起了全球范围内的持续关注,尤其是在流量汇聚之后的主干网,这些问题更为突出.传统互联网资源的过供给原则进一步加剧了这种严峻的状况.鉴于此,面向主干网提出了一种器件级动态功率感知节能机制.该机制首先对节点入流量大小进行动态短期预测,进而采用细粒度的端口数转换算法确定需要调整的端口数目,之后依据休眠唤醒规则和速率调节规则控制相应的端口进行功率状态的转换,最后采用层次调度算法进行分组的调度.在实现方面,基于3个典型主干网中的真实流量分布轨迹,确定了预测参数,测试了功效随负载变化的比例性,探索了采用不同的预测时隙序列以及不同的流量负载计数器数目对负载预测准确度的影响,分析了可能出现的流量负载预测过估计误差和低估计误差对功耗和性能产生的影响,讨论了在不同应用场景下功效与实际性能之间的权衡.结果表明:提出的器件级功控机制能够动态、细粒度和比例性地控制各网元功耗,具有显著的节能收益.Abstract: With a progressive increase of Internet traffic year by year, power consumption in the Internet is rising at an alarming rate, and the consequent environmental problems, e.g. the greenhouse effect caused by the surging carbon footprint and so on, have also aroused continuous concerns on a global scale, which are more serious especially in the backbone network where the aggregated traffic is transmitted. The oversupply principle for traditional Internet resources further aggravates these severe situations. With regard to this situation, a component-level dynamic power-aware energy-saving mechanism is devised over the backbone network in this paper. In the proposed mechanism, firstly, the incoming traffic size of nodes is dynamically predicted for a short term; then the fine-grained port number conversion algorithm is adopted to determine the number of ports to be regulated; then the corresponding ports convert their power states according to the sleeping and awakening rules; finally a novel hierarchical scheduling algorithm is devised to schedule the packets. In the simulation, based on the real traffic distribution traces over three typical backbone networks, we determine prediction parameters, test the proportionality of tracing load by power efficiency, explore the impacts of adopting different prediction time slot series and the different number of traffic load counters on the accuracy of load prediction, analyze the impacts of overestimation error and underestimation error of traffic load prediction that might appear on power consumption and discuss the tradeoff between power efficiency and actual performance in different application scenarios. Results demonstrate that the component-level power control mechanism proposed in the paper can control the power consumption of each network component dynamically and proportionally with a fine granularity and has a significantly energy-saving benefit.
-
-
期刊类型引用(17)
1. 袁子淇,孙庆赟,周号益,朱祖坤,李建欣. MNDetector:基于多层网络的异常访问检测方法. 计算机研究与发展. 2025(03): 765-778 . 本站查看
2. 陈佳乐,陈旭,景永俊,王叔洋. 图神经网络在异常检测中的应用综述. 计算机工程与应用. 2024(13): 51-65 . 百度学术
3. 林馥,李明康,罗学雄,张书豪,张越,王梓桐. 基于异常感知的变分图自编码器的图级异常检测算法. 计算机研究与发展. 2024(08): 1968-1981 . 本站查看
4. 孔翎超,刘国柱. 离群点检测算法综述. 计算机科学. 2024(08): 20-33 . 百度学术
5. 王泽鹏 ,马超 ,张壮壮 ,吴黎兵 ,石小川 . 动态决策驱动的工控网络数据要素威胁检测方法. 计算机研究与发展. 2024(10): 2404-2416 . 本站查看
6. 叶苗,程锦,黄源,蒋秋香,王勇. 面向WSN异常节点检测的融合重构机制与对比学习方法. 通信学报. 2024(09): 153-169 . 百度学术
7. 王芳. 基于深度学习的网络传输数据异常识别方法. 现代电子技术. 2023(06): 62-66 . 百度学术
8. 江铃燚,郑艺峰,陈澈,李国和,张文杰. 有监督深度学习的优化方法研究综述. 中国图象图形学报. 2023(04): 963-983 . 百度学术
9. 富坤,刘赢华,郝玉涵,孙明磊. 基于图模块度聚类的异常检测算法. 计算机应用研究. 2023(06): 1721-1727 . 百度学术
10. 曹成顺. 基于深度神经网络的输电线路异常自动辨识方法. 信息与电脑(理论版). 2023(15): 165-167 . 百度学术
11. 冯健,赵宇鹏,刘天. 融合双重自监督信号的图异常检测. 科学技术与工程. 2023(35): 15142-15147 . 百度学术
12. 王炳泉. 基于SVM的网络流量异常检测算法. 信息与电脑(理论版). 2023(22): 245-247 . 百度学术
13. 唐立,郝鹏,任沛阁,张祖耀,何翔,张学军. 基于改进孤立森林算法的无人机异常行为检测. 航空学报. 2022(08): 584-593 . 百度学术
14. 陈益芳,宣羿,樊立波,孙智卿,屠永伟,张亦涵,蔡乾晨. 基于机器学习的电网威胁检测算法模型和大数据平台设计. 电力大数据. 2022(04): 34-41 . 百度学术
15. 刘华玲,刘雅欣,许珺怡,陈尚辉,乔梁. 图异常检测在金融反欺诈中的应用研究进展. 计算机工程与应用. 2022(22): 41-53 . 百度学术
16. 李净. 国际视野下治理虚假新闻的技术手段及相关模型. 中国传媒科技. 2021(08): 17-21 . 百度学术
17. 雷瑜,郑丹,曾繁如,樊志伟,宁黎,邓立. 四川耕地“非粮化”监测中的智能监测方法. 资源与人居环境. 2021(12): 47-51 . 百度学术
其他类型引用(34)
计量
- 文章访问数: 893
- HTML全文浏览量: 0
- PDF下载量: 216
- 被引次数: 51