• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

机器学习在SDN路由优化中的应用研究综述

王桂芝, 吕光宏, 贾吾财, 贾创辉, 张建申

王桂芝, 吕光宏, 贾吾财, 贾创辉, 张建申. 机器学习在SDN路由优化中的应用研究综述[J]. 计算机研究与发展, 2020, 57(4): 688-698. DOI: 10.7544/issn1000-1239.2020.20190837
引用本文: 王桂芝, 吕光宏, 贾吾财, 贾创辉, 张建申. 机器学习在SDN路由优化中的应用研究综述[J]. 计算机研究与发展, 2020, 57(4): 688-698. DOI: 10.7544/issn1000-1239.2020.20190837
Wang Guizhi, Lü Guanghong, Jia Wucai, Jia Chuanghui, Zhang Jianshen. A Review on the Application of Machine Learning in SDN Routing Optimization[J]. Journal of Computer Research and Development, 2020, 57(4): 688-698. DOI: 10.7544/issn1000-1239.2020.20190837
Citation: Wang Guizhi, Lü Guanghong, Jia Wucai, Jia Chuanghui, Zhang Jianshen. A Review on the Application of Machine Learning in SDN Routing Optimization[J]. Journal of Computer Research and Development, 2020, 57(4): 688-698. DOI: 10.7544/issn1000-1239.2020.20190837
王桂芝, 吕光宏, 贾吾财, 贾创辉, 张建申. 机器学习在SDN路由优化中的应用研究综述[J]. 计算机研究与发展, 2020, 57(4): 688-698. CSTR: 32373.14.issn1000-1239.2020.20190837
引用本文: 王桂芝, 吕光宏, 贾吾财, 贾创辉, 张建申. 机器学习在SDN路由优化中的应用研究综述[J]. 计算机研究与发展, 2020, 57(4): 688-698. CSTR: 32373.14.issn1000-1239.2020.20190837
Wang Guizhi, Lü Guanghong, Jia Wucai, Jia Chuanghui, Zhang Jianshen. A Review on the Application of Machine Learning in SDN Routing Optimization[J]. Journal of Computer Research and Development, 2020, 57(4): 688-698. CSTR: 32373.14.issn1000-1239.2020.20190837
Citation: Wang Guizhi, Lü Guanghong, Jia Wucai, Jia Chuanghui, Zhang Jianshen. A Review on the Application of Machine Learning in SDN Routing Optimization[J]. Journal of Computer Research and Development, 2020, 57(4): 688-698. CSTR: 32373.14.issn1000-1239.2020.20190837

机器学习在SDN路由优化中的应用研究综述

基金项目: 国家自然科学基金项目(61373091)
详细信息
  • 中图分类号: TP393

A Review on the Application of Machine Learning in SDN Routing Optimization

Funds: This work was supported by the National Natural Science Foundation of China (61373091).
  • 摘要: 随着网络技术的迅速发展和新型应用的不断出现,网络数据的急剧增加导致网络管理变得极其复杂.传统网络中的设备多种多样,配置复杂,难于管理,而软件定义网络(software defined networking, SDN)这种新型网络架构的出现给网络管理带来了曙光,该架构摆脱了硬件设备对网络的限制,使网络具有灵活、可编程性等优点.一个好的路由机制影响着整个网络的性能,软件定义网络的集中控制特性给机器学习在路由机制方面的应用带来了新的研究方向.首先论述了SDN路由优化的现状,然后从监督学习和强化学习2个方面概述了近年来机器学习在SDN路由方面的研究,最后为了满足不同应用的服务质量(quality of service, QoS)以及不同用户的体验质量(quality of experience, QoE),提出了数据驱动认知路由的发展趋势.通过赋予网络节点感知、记忆、查找、决策、推理、解释等认知行为,加快寻路过程,优化路由选择,完善网络管理.
    Abstract: With the rapid development of network technology and the continuous emergence of new applications, the sharp increase in network data makes network management extremely complicated. Devices in traditional networks are diverse, complex in configuration, and difficult to manage, but the appearance of a new network architecture, such as software defined networking (SDN), brings dawn to network management, which gets rid of the limitation of hardware equipment to the network, and makes the network have the advantages of flexibility, programmability and so on. A good routing mechanism affects the performance of the whole network, the centralized control characteristics of SDN bring new research directions to the application of machine learning in routing mechanisms. First this paper discusses the current status of SDN routing optimization, and then summarizes the research on machine learning in SDN routing in recent years from the aspects of supervised learning and reinforcement learning. Finally, in order to meet the QoS (quality of service) of different applications and QoE (quality of experience) of different users, this paper puts forward the development trend of the data driven cognitive route. Giving the network nodes with cognitive behaviors such as perception, memory, search, decision-making, reasoning, explanation and so on, can speed up the path-finding process, optimize the route selection and improve the network management.
  • 期刊类型引用(6)

    1. 郭晓龙,牛晋宇,杜永萍. 基于树莓派的高效卷积优化方法. 计算机技术与发展. 2023(05): 96-104 . 百度学术
    2. 辛明勇,祝健杨,徐长宝,姚浩,刘德宏. 基于循环神经网络的多核处理器层次化存储技术. 电子设计工程. 2023(22): 121-124+129 . 百度学术
    3. 王利伟,玄志武,徐洪洲,刘学. Windows环境下遥测数据并行拼接处理方法研究. 电子设计工程. 2021(02): 10-15 . 百度学术
    4. 孟慧玲,王耀彬,李凌,杨洋,王欣夷,刘志勤. TACLeBench中内核程序循环级推测并行性分析. 计算机应用. 2021(09): 2652-2657 . 百度学术
    5. 于海心,王晶,李晓锋. 基于改进RMS算法的多核嵌入式系统总线周期调度表优化设计. 火炮发射与控制学报. 2021(03): 71-75 . 百度学术
    6. 丁艳,张海文,孙永彦. 基于多网格技术的电网工程造价数据信息分析方法研究. 电子设计工程. 2021(19): 35-39 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  2200
  • HTML全文浏览量:  4
  • PDF下载量:  1512
  • 被引次数: 14
出版历程
  • 发布日期:  2020-03-31

目录

    /

    返回文章
    返回