• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析

程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮

程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12): 2583-2595. DOI: 10.7544/issn1000-1239.2020.20190854
引用本文: 程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12): 2583-2595. DOI: 10.7544/issn1000-1239.2020.20190854
Cheng Yan, Yao Leibo, Zhang Guanghe, Tang Tianwei, Xiang Guoxiong, Chen Haomai, Feng Yue, Cai Zhuang. Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(12): 2583-2595. DOI: 10.7544/issn1000-1239.2020.20190854
Citation: Cheng Yan, Yao Leibo, Zhang Guanghe, Tang Tianwei, Xiang Guoxiong, Chen Haomai, Feng Yue, Cai Zhuang. Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(12): 2583-2595. DOI: 10.7544/issn1000-1239.2020.20190854
程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12): 2583-2595. CSTR: 32373.14.issn1000-1239.2020.20190854
引用本文: 程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12): 2583-2595. CSTR: 32373.14.issn1000-1239.2020.20190854
Cheng Yan, Yao Leibo, Zhang Guanghe, Tang Tianwei, Xiang Guoxiong, Chen Haomai, Feng Yue, Cai Zhuang. Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(12): 2583-2595. CSTR: 32373.14.issn1000-1239.2020.20190854
Citation: Cheng Yan, Yao Leibo, Zhang Guanghe, Tang Tianwei, Xiang Guoxiong, Chen Haomai, Feng Yue, Cai Zhuang. Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(12): 2583-2595. CSTR: 32373.14.issn1000-1239.2020.20190854

基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析

基金项目: 国家自然科学基金项目(61967011);江西省自然科学基金项目(20202BABL202033);江西省重点研发计划项目(20161BBE50086);江西省教育厅科技重点项目(GJJ150299);教育厅人文社科重点(重大)项目(JD19056)
详细信息
  • 中图分类号: TP391

Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism

Funds: This work was supported by the National Natural Science Foundation of China (61967011), the Natural Science Foundation Project of Jiangxi Province (20202BABL202033), the Primary Research and Development Program of Jiangxi Province (20161BBE50086), the Science and Technology Key Project of Education Department of Jiangxi Province (GJJ150299), and the Humanities and Social Sciences Key (Major) Project of the Education Department (JD19056).
  • 摘要: 近年来,卷积神经网络(convolutional neural network, CNN)和循环神经网络(recurrent neural network, RNN)已在文本情感分析领域得到广泛应用,并取得了不错的效果.然而,文本之间存在上下文依赖问题,虽然CNN能提取到句子连续词间的局部信息,但是会忽略词语之间上下文语义信息;双向门控循环单元(bidirectional gated recurrent unit, BiGRU)网络不仅能够解决传统RNN模型存在的梯度消失或梯度爆炸问题,而且还能很好地弥补CNN不能有效提取长文本的上下文语义信息的缺陷,但却无法像CNN那样很好地提取句子局部特征.因此提出一种基于注意力机制的多通道CNN和双向门控循环单元(MC-AttCNN-AttBiGRU)的神经网络模型.该模型不仅能够通过注意力机制关注到句子中对情感极性分类重要的词语,而且结合了CNN提取文本局部特征和BiGRU网络提取长文本上下文语义信息的优势,提高了模型的文本特征提取能力.在谭松波酒店评论数据集和IMDB数据集上的实验结果表明:提出的模型相较于其他几种基线模型可以提取到更丰富的文本特征,可以取得比其他基线模型更好的分类效果.
    Abstract: CNN(convolutional neural network) and RNN(recurrent neural network) have been widely used in the field of text sentiment analysis and have achieved good results in recent years. However, there is a problem of contextual dependency between texts, although CNN can extract local features between consecutive words of a sentence, it ignores the contextual semantic information between words. BiGRU(bidirectional gated recurrent unit) network can not only solve the problem of gradient disappearance or gradient explosion in traditional RNN model, but also make up for the shortcomings that CNN can’t effectively extract contextual semantic information of long text, while it can’t extract local features as well as CNN. Therefore, this paper proposes a MC-AttCNN-AttBiGRU(multi-channels CNN and BiGRU network based on attention mechanism) model. The model can notice the important words for sentiment classification in the sentence. It combines the advantages of CNN to extract local features of text and BiGRU network to extract contextual semantic information of long text, which improves the text feature extraction ability of the model. The experimental results on the Tan Songbo Hotel Review dataset and IMDB dataset show that the proposed model can extract richer text features than other baseline models, and can achieve better classification results than other baseline models.
  • 期刊类型引用(8)

    1. 张宇姣,徐健,吴迪. 基于图表示学习的知识图谱时序推理模型. 济南大学学报(自然科学版). 2025(02): 272-277 . 百度学术
    2. 陆佳炜,王小定,朱昊天,程振波,肖刚. 一种融合实体图上下文的三维旋转知识图谱表示学习. 小型微型计算机系统. 2023(01): 124-131 . 百度学术
    3. 陈小英,熊盛武,王盛,张士伟. 基于上下文时序关联的时序知识图谱嵌入方法. 武汉大学学报(理学版). 2023(02): 249-257 . 百度学术
    4. 卢菁,陈婉璐,刘丛. KGU-SP:一种挖掘标准模式的知识图谱更新方法. 小型微型计算机系统. 2023(06): 1177-1183 . 百度学术
    5. 魏飞鸣,许倩倩,顾网平,李永晨. 知识图谱在探测与识别领域中的应用分析. 制导与引信. 2023(04): 1-8+28 . 百度学术
    6. 马昂,于艳华,杨胜利,石川,李劼,蔡修秀. 基于强化学习的知识图谱综述. 计算机研究与发展. 2022(08): 1694-1722 . 本站查看
    7. 宁原隆,周刚,卢记仓,杨大伟,张田. 一种融合关系路径与实体描述信息的知识图谱表示学习方法. 计算机研究与发展. 2022(09): 1966-1979 . 本站查看
    8. 夏毅,兰明敬,陈晓慧,罗军勇,周刚,何鹏. 可解释的知识图谱推理方法综述. 网络与信息安全学报. 2022(05): 1-25 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  1680
  • HTML全文浏览量:  7
  • PDF下载量:  806
  • 被引次数: 24
出版历程
  • 发布日期:  2020-11-30

目录

    /

    返回文章
    返回