A Degree Corrected Stochastic Block Model for Attributed Networks
-
摘要: 社区检测是复杂网络分析中的重要任务,现有的社区检测方法多侧重于利用单纯的网络结构,而融合节点属性的方法也主要针对传统的社区结构,不能检测网络中的二部图结构、混合结构等情况.此外,网络中每个节点的度会影响网络中链接的构成,同样会影响社区结构的分布.因此,提出一种基于随机块模型的属性网络社区检测方法DPSB_PG.不同于其他属性网络中的生成式模型,该方法中节点链接和节点属性的产生均服从泊松分布,并基于随机块模型考虑社区间相连接的概率,重点在节点链接的生成过程中融合度修正的思想,最后利用期望最大化EM算法推断模型中的参数,得到网络中节点的社区隶属度.真实网络上的实验结果显示:模型继承了随机块模型的优点,能够检测网络中的广义社区结构,且由于度修正的引入,具有很好的数据拟合能力,因此在属性网络与非属性网络社区检测性能上优于其他现有相关算法.Abstract: Community detection is an important task in complex network analysis. The existing community detection methods mostly focus on utilizing the simple network structure, while the methods of integrating network topology and node attributes are also mainly aimed at the traditional community structure, which fails to detect the bipartite structure, mixed structure, etc. However, the degree of each node in the network will affect the composition of the links in the network, as well as the distribution of the community structure. This paper proposes a method called DPSB_PG for attributed networks community detection based on the stochastic block model. Unlike other generative models for attributed networks, in this method, the generation of node links and node attributes both followes the Poisson distribution, and considers the probability between communities based on the stochastic block model. Moreover, the idea of degree corrected is integrated in the process of generating node links. Finally, in order to obtain the community membership of nodes, the expectation-maximization algorithm is used to infer the parameters of the model. The experimental results on the real networks show that the DPSB_PG inherits the advantages of the stochastic block model and can detect the general community structure in networks. Since the introduction of the idea of degree corrected, this model has a good data fitting ability. Overall, the performance of this model is superior to other existing state-of-the-art community detection algorithms for both attributed networks and non-attributed networks.
-
-
期刊类型引用(12)
1. 刘强,朱金森,赵龙龙,沙宇晨,刘尚东,季一木. 基于字句动态特征和自注意力的情感分析方法. 数据采集与处理. 2024(01): 193-203 . 百度学术
2. 韩虎,孟甜甜. 面向语法加权图文本的方面情感三元组抽取. 北京航空航天大学学报. 2024(02): 409-418 . 百度学术
3. 郭磊,贾真,李天瑞. 面向方面级情感分析的交互式关系图注意力网络. 计算机应用. 2024(03): 696-701 . 百度学术
4. 杨锐,刘永坚,解庆,刘平峰. 基于Graph-LSTMs的双重位置感知方面级情感分类. 计算机应用与软件. 2024(04): 165-172 . 百度学术
5. 刘辉,马祥,张琳玉,何如瑾. 融合匹配长短时记忆网络和语法距离的方面级情感分析模型. 计算机应用. 2023(01): 45-50 . 百度学术
6. 代祖华,刘园园,狄世龙. 语义增强的图神经网络方面级文本情感分析. 计算机工程. 2023(06): 71-80 . 百度学术
7. 孟甜甜,韩虎,吴渊航. 面向方面抽取与情感分类的多任务联合建模. 计算机科学与探索. 2023(07): 1669-1679 . 百度学术
8. 程帆,王芳,黄树成. 基于混合编码与双通道GCN的方面级情感分析. 软件导刊. 2023(07): 15-20 . 百度学术
9. 孙天伟,杨长春,顾晓清,谈国胜. 结合共现网络的方面级情感分析研究. 计算机工程与应用. 2023(20): 111-118 . 百度学术
10. 张文钧,蒋良孝,张欢,陈龙. 一种双层贝叶斯模型:随机森林朴素贝叶斯. 计算机研究与发展. 2021(09): 2040-2051 . 本站查看
11. 韩虎,吴渊航,秦晓雅. 面向方面级情感分析的交互图注意力网络模型. 电子与信息学报. 2021(11): 3282-3290 . 百度学术
12. 巫浩盛,缪裕青,张万桢,周明,文益民. 基于距离与图卷积网络的方面级情感分析. 计算机应用研究. 2021(11): 3274-3278+3321 . 百度学术
其他类型引用(33)
计量
- 文章访问数: 1025
- HTML全文浏览量: 0
- PDF下载量: 328
- 被引次数: 45