A Degree Corrected Stochastic Block Model for Attributed Networks
-
摘要: 社区检测是复杂网络分析中的重要任务,现有的社区检测方法多侧重于利用单纯的网络结构,而融合节点属性的方法也主要针对传统的社区结构,不能检测网络中的二部图结构、混合结构等情况.此外,网络中每个节点的度会影响网络中链接的构成,同样会影响社区结构的分布.因此,提出一种基于随机块模型的属性网络社区检测方法DPSB_PG.不同于其他属性网络中的生成式模型,该方法中节点链接和节点属性的产生均服从泊松分布,并基于随机块模型考虑社区间相连接的概率,重点在节点链接的生成过程中融合度修正的思想,最后利用期望最大化EM算法推断模型中的参数,得到网络中节点的社区隶属度.真实网络上的实验结果显示:模型继承了随机块模型的优点,能够检测网络中的广义社区结构,且由于度修正的引入,具有很好的数据拟合能力,因此在属性网络与非属性网络社区检测性能上优于其他现有相关算法.Abstract: Community detection is an important task in complex network analysis. The existing community detection methods mostly focus on utilizing the simple network structure, while the methods of integrating network topology and node attributes are also mainly aimed at the traditional community structure, which fails to detect the bipartite structure, mixed structure, etc. However, the degree of each node in the network will affect the composition of the links in the network, as well as the distribution of the community structure. This paper proposes a method called DPSB_PG for attributed networks community detection based on the stochastic block model. Unlike other generative models for attributed networks, in this method, the generation of node links and node attributes both followes the Poisson distribution, and considers the probability between communities based on the stochastic block model. Moreover, the idea of degree corrected is integrated in the process of generating node links. Finally, in order to obtain the community membership of nodes, the expectation-maximization algorithm is used to infer the parameters of the model. The experimental results on the real networks show that the DPSB_PG inherits the advantages of the stochastic block model and can detect the general community structure in networks. Since the introduction of the idea of degree corrected, this model has a good data fitting ability. Overall, the performance of this model is superior to other existing state-of-the-art community detection algorithms for both attributed networks and non-attributed networks.
-
-
期刊类型引用(12)
1. 郭锋,刘飞洋,刘鸽. LoongArch处理器存储管理技术研究与实现. 电脑编程技巧与维护. 2025(03): 82-84 . 百度学术
2. 邢世远,张见齐,王焕东,吴学智,吴瑞阳. 片间互连总线协议层关键技术研究. 高技术通讯. 2025(02): 113-123 . 百度学术
3. 舒燕君,郑翔宇,徐成华,黄沛,王永琪,周凡,张展,左德承. 面向LoongArch边界检查访存指令的GCC优化. 计算机研究与发展. 2025(05): 1136-1150 . 本站查看
4. 孙东华,刘亚冬. 基于龙芯3A5000的全国产化EtherCAT主站控制器设计. 现代信息科技. 2025(08): 16-19+24 . 百度学术
5. 谢汶兵,田雪,漆锋滨,武成岗,王俊,罗巧玲. 二进制翻译技术综述. 软件学报. 2024(06): 2687-2723 . 百度学术
6. 谢君,陈汉云,袁璐,张梦娇,王增,石锐. 基于信创的医院自助服务系统建设探索. 中国数字医学. 2024(07): 41-45+69 . 百度学术
7. 谭弘泽,王剑. 基于动态压缩的高存储效率末级分支目标缓冲. 高技术通讯. 2024(07): 671-680 . 百度学术
8. 刘登峰,李东亚,柴志雷,周浩杰,丁海峰. 基于QEMU的SIMD指令替换浮点指令框架. 湖南大学学报(自然科学版). 2024(08): 70-77 . 百度学术
9. 陈国良,汤晓宇,尤帅,姚小良,梅超君,林时俊,刘尚东,吴少刚,孙雅薇,王汝传,季一木. 基于国产处理器的智能大数据一体机架构及应用研究. 南京邮电大学学报(自然科学版). 2024(04): 1-16 . 百度学术
10. 贾金成,朱家鑫,唐震,王志鹏,王伟. 映射字典导向的64位ARM到RISC-V汇编翻译. 小型微型计算机系统. 2024(08): 2041-2048 . 百度学术
11. 游英杰,刘宣佑,唐文武,张统兵,王岩. 基于CPU的PCIe驱动及与DSP和FPGA的交互设计. 火控雷达技术. 2024(04): 88-93+123 . 百度学术
12. 王一泠,吴琦,安军社. 支持MIPS架构的轻量型开源鸿蒙系统移植. 计算机工程. 2023(12): 25-34+45 . 百度学术
其他类型引用(23)
计量
- 文章访问数: 1025
- HTML全文浏览量: 0
- PDF下载量: 328
- 被引次数: 35