A Hierarchical Attention Mechanism Framework for Internet Credit Evaluation
-
摘要: 随着互联网的发展,基于用户信用的在线服务产品也越来越多地应用到各个领域.在这些信用数据中,除了传统的信贷数据,还包含用户网上消费数据等,因此如何利用这些数据来评估用户的信用等级是一个亟待解决的重要问题.之前的方法主要是基于信贷领域属性的研究,缺乏在互联网领域的研究,并且这些方法很少考虑用户的不同属性对其信用的不同的重要程度.因此,为了解决这些问题,提出一个基于层级注意力机制用户信用评估模型框架(HAM-UCE),模型首先构建用户信用画像,然后利用层级注意力机制在多个注意力层逐步获取更重要的用户属性特征,实现对用户信用等级的评估.实验结果表明该方法能够有效地实现对用户信用进行等级评估,能够比基准算法取得更好的性能.Abstract: With the development of the Internet, online service products based on user credit have been increasingly applied to various fields. The Internet user credit data, which contains diverse types of data, describes the user’s various aspects. Thus how to use user’s data to evaluate users’ credit ratings on the Internet is an important issue. Most of previous research methods mainly focus on the traditional credit evaluation which is based on the extraction of attributes in the credit field. However, there are only a few of work on Internet credit evaluation. And those work lies in lacking efficient methods to consider the different importance of multiple user attributes on their credit history. Therefore, to solve these problems, this paper presents a hierarchical attention mechanism framework for user credit evaluation based on users’ profiles. Specifically, first, the model builds user profile with user attributes such as user credit history and user behaviors to describe the coarse granularity of users. Then, the significance of user’s attribute with multiple attention layers is gradually obtained to achieve the evaluation of user credit ratings. Extensive experimental results on the public dataset have demonstrated that this model can achieve better performance on evaluation of user than other benchmark algorithms.
-
-
期刊类型引用(9)
1. 杨鹏飞,陈梅,张忠帅,陈永旭. 自适应邻居和图正则的表示学习. 小型微型计算机系统. 2023(03): 553-559 . 百度学术 2. 崔峻玮,翟亚红. 近邻成分分析下的DDoS攻击检测. 湖北汽车工业学院学报. 2023(02): 36-41 . 百度学术 3. 朱建勇,李兆祥,徐彬,杨辉,聂飞平. 基于图嵌入的正交局部保持投影无监督特征选择. 计算机科学. 2023(S2): 552-560 . 百度学术 4. 樊星男,刘晓娟. 一种适用于轴承故障诊断的改进Mixup数据增强方法. 工程机械. 2022(04): 38-45+9 . 百度学术 5. 杨秀璋,宋籍文,武帅,廖文婧,任天舒,刘建义. 一种融合Bert预训练和BiLSTM的场景迁移情感分析研究. 计算机时代. 2022(08): 69-74+79 . 百度学术 6. 江兵兵,何文达,吴兴宇,项俊浩,洪立斌,盛伟国. 基于自适应图学习的半监督特征选择. 电子学报. 2022(07): 1643-1652 . 百度学术 7. 周长顺,徐久成,瞿康林,申凯丽,章磊. 一种基于改进邻域粗糙集中属性重要度的快速属性约简方法. 西北大学学报(自然科学版). 2022(05): 745-752 . 百度学术 8. 张巍,张圳彬. 联合图嵌入与特征加权的无监督特征选择. 广东工业大学学报. 2021(05): 16-23 . 百度学术 9. 彭明,张继炎,王慧玲,黄宏昆,刘艳芳. 基于自适应邻域和自表示正则的无监督特征选择算法. 南京理工大学学报. 2021(04): 439-446 . 百度学术 其他类型引用(19)
计量
- 文章访问数: 961
- HTML全文浏览量: 4
- PDF下载量: 581
- 被引次数: 28