• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于自适应邻域嵌入的无监督特征选择算法

刘艳芳, 李文斌, 高阳

刘艳芳, 李文斌, 高阳. 基于自适应邻域嵌入的无监督特征选择算法[J]. 计算机研究与发展, 2020, 57(8): 1639-1649. DOI: 10.7544/issn1000-1239.2020.20200219
引用本文: 刘艳芳, 李文斌, 高阳. 基于自适应邻域嵌入的无监督特征选择算法[J]. 计算机研究与发展, 2020, 57(8): 1639-1649. DOI: 10.7544/issn1000-1239.2020.20200219
Liu Yanfang, Li Wenbin, Gao Yang. Adaptive Neighborhood Embedding Based Unsupervised Feature Selection[J]. Journal of Computer Research and Development, 2020, 57(8): 1639-1649. DOI: 10.7544/issn1000-1239.2020.20200219
Citation: Liu Yanfang, Li Wenbin, Gao Yang. Adaptive Neighborhood Embedding Based Unsupervised Feature Selection[J]. Journal of Computer Research and Development, 2020, 57(8): 1639-1649. DOI: 10.7544/issn1000-1239.2020.20200219
刘艳芳, 李文斌, 高阳. 基于自适应邻域嵌入的无监督特征选择算法[J]. 计算机研究与发展, 2020, 57(8): 1639-1649. CSTR: 32373.14.issn1000-1239.2020.20200219
引用本文: 刘艳芳, 李文斌, 高阳. 基于自适应邻域嵌入的无监督特征选择算法[J]. 计算机研究与发展, 2020, 57(8): 1639-1649. CSTR: 32373.14.issn1000-1239.2020.20200219
Liu Yanfang, Li Wenbin, Gao Yang. Adaptive Neighborhood Embedding Based Unsupervised Feature Selection[J]. Journal of Computer Research and Development, 2020, 57(8): 1639-1649. CSTR: 32373.14.issn1000-1239.2020.20200219
Citation: Liu Yanfang, Li Wenbin, Gao Yang. Adaptive Neighborhood Embedding Based Unsupervised Feature Selection[J]. Journal of Computer Research and Development, 2020, 57(8): 1639-1649. CSTR: 32373.14.issn1000-1239.2020.20200219

基于自适应邻域嵌入的无监督特征选择算法

基金项目: 国家重点研发计划项目(2017YFB0702600, 2017YFB0702601);国家自然科学基金项目(61806096);福建省中青年教师教育科研项目(科技类)(JAT170577,JAT190743);龙岩市科技计划项目(2019LYF13002)
详细信息
  • 中图分类号: TP391

Adaptive Neighborhood Embedding Based Unsupervised Feature Selection

Funds: This work was supported by the National Key Research and Development Program of China (2017YFB0702600, 2017YFB0702601), the National Natural Science Foundation of China (61806096), the Education Scientific Research Project of Young Teachers of Fujian Province (JAT170577, JAT190743), and the Science and Technology Project of Longyan City (2019LYF13002).
  • 摘要: 无监督特征选择算法可以对高维无标记数据进行有效的降维,从而减少数据处理的时间和空间复杂度,避免算法模型出现过拟合现象.然而,现有的无监督特征选择方法大都运用k近邻法捕捉数据样本的局部几何结构,忽略了数据分布不均的问题.为了解决这个问题,提出了一种基于自适应邻域嵌入的无监督特征选择(adaptive neighborhood embedding based unsupervised feature selection, ANEFS)算法,该算法根据数据集自身的分布特点确定每个样本的近邻数,进而构造样本相似矩阵,同时引入从高维空间映射到低维空间的中间矩阵,利用拉普拉斯乘子法优化目标函数进行求解.6个UCI数据集的实验结果表明:所提出的算法能够选出具有更高聚类精度和互信息的特征子集.
    Abstract: Unsupervised feature selection algorithms can effectively reduce the dimensionality of high-dimensional unmarked data, which not only reduce the time and space complexity of data processing, but also avoid the over-fitting phenomenon of the feature selection model. However, most of the existing unsupervised feature selection algorithms use k-nearest neighbor method to capture the local geometric structure of data samples, ignoring the problem of uneven data distribution. To solve this problem, an unsupervised feature selection algorithm based on adaptive neighborhood embedding (ANEFS) is proposed. The algorithm determines the number of neighbors of samples according to the distribution of datasets, and then constructs similarity matrix. Meanwhile, a mid-matrix is introduced which maps from high-dimensional space to low-dimensional space, and Laplacian multiplier method is used to optimize the reconstructed function. The experimental results of six UCI datasets show that the proposed algorithm can select representative feature subsets which have higher clustering accuracy and normalize mutual information.
  • 期刊类型引用(10)

    1. 吴江,段一奇. 金融评论文本情感分析研究趋势与未来展望. 信息资源管理学报. 2025(01): 86-101 . 百度学术
    2. 葛业波,刘文杰,顾雨晨. 融合情感分析和GAN-TrellisNet的股价预测方法. 计算机工程与应用. 2024(12): 314-324 . 百度学术
    3. 高霞. 基于机器学习算法的金融市场趋势预测研究. 微型电脑应用. 2023(02): 30-32+40 . 百度学术
    4. 李庆涛,林培光,王基厚,周佳倩,张燕,蹇木伟. 基于板块效应的深度学习股价走势预测方法. 南京师范大学学报(工程技术版). 2022(01): 30-38 . 百度学术
    5. 刘月娟,王武. 基于多特征融合的股票走势预测研究. 云南民族大学学报(自然科学版). 2022(02): 227-234 . 百度学术
    6. 马朋飞,史树斌,张小领. 移动式无线充电的无线传感器网络的数据收集分析. 数字技术与应用. 2022(08): 61-63 . 百度学术
    7. 周佳倩,林培光,李庆涛,王基厚,刘利达. MDDE:一种基于投资组合的金融市场趋势分析方法. 南京大学学报(自然科学). 2022(05): 876-883 . 百度学术
    8. 姚远,张朝阳. 基于HP-LSTM模型的股指价格预测方法. 计算机工程与应用. 2021(24): 296-304 . 百度学术
    9. 王基厚,林培光,周佳倩,李庆涛,张燕,蹇木伟. 结合公司财务报表数据的股票指数预测方法. 计算机应用. 2021(12): 3632-3636 . 百度学术
    10. 辛强伟,唐云凯. 多维度数据组合的人工智能系统性能优化分析. 数字技术与应用. 2020(10): 36-38 . 百度学术

    其他类型引用(41)

计量
  • 文章访问数:  949
  • HTML全文浏览量:  1
  • PDF下载量:  482
  • 被引次数: 51
出版历程
  • 发布日期:  2020-07-31

目录

    /

    返回文章
    返回