• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于双向循环神经网络的安卓浏览器指纹识别方法

刘奇旭, 刘心宇, 罗成, 王君楠, 陈浪平, 刘嘉熹

刘奇旭, 刘心宇, 罗成, 王君楠, 陈浪平, 刘嘉熹. 基于双向循环神经网络的安卓浏览器指纹识别方法[J]. 计算机研究与发展, 2020, 57(11): 2294-2311. DOI: 10.7544/issn1000-1239.2020.20200459
引用本文: 刘奇旭, 刘心宇, 罗成, 王君楠, 陈浪平, 刘嘉熹. 基于双向循环神经网络的安卓浏览器指纹识别方法[J]. 计算机研究与发展, 2020, 57(11): 2294-2311. DOI: 10.7544/issn1000-1239.2020.20200459
Liu Qixu, Liu Xinyu, Luo Cheng, Wang Junnan, Chen Langping, Liu Jiaxi. Android Browser Fingerprinting Identification Method Based on Bidirectional Recurrent Neural Network[J]. Journal of Computer Research and Development, 2020, 57(11): 2294-2311. DOI: 10.7544/issn1000-1239.2020.20200459
Citation: Liu Qixu, Liu Xinyu, Luo Cheng, Wang Junnan, Chen Langping, Liu Jiaxi. Android Browser Fingerprinting Identification Method Based on Bidirectional Recurrent Neural Network[J]. Journal of Computer Research and Development, 2020, 57(11): 2294-2311. DOI: 10.7544/issn1000-1239.2020.20200459
刘奇旭, 刘心宇, 罗成, 王君楠, 陈浪平, 刘嘉熹. 基于双向循环神经网络的安卓浏览器指纹识别方法[J]. 计算机研究与发展, 2020, 57(11): 2294-2311. CSTR: 32373.14.issn1000-1239.2020.20200459
引用本文: 刘奇旭, 刘心宇, 罗成, 王君楠, 陈浪平, 刘嘉熹. 基于双向循环神经网络的安卓浏览器指纹识别方法[J]. 计算机研究与发展, 2020, 57(11): 2294-2311. CSTR: 32373.14.issn1000-1239.2020.20200459
Liu Qixu, Liu Xinyu, Luo Cheng, Wang Junnan, Chen Langping, Liu Jiaxi. Android Browser Fingerprinting Identification Method Based on Bidirectional Recurrent Neural Network[J]. Journal of Computer Research and Development, 2020, 57(11): 2294-2311. CSTR: 32373.14.issn1000-1239.2020.20200459
Citation: Liu Qixu, Liu Xinyu, Luo Cheng, Wang Junnan, Chen Langping, Liu Jiaxi. Android Browser Fingerprinting Identification Method Based on Bidirectional Recurrent Neural Network[J]. Journal of Computer Research and Development, 2020, 57(11): 2294-2311. CSTR: 32373.14.issn1000-1239.2020.20200459

基于双向循环神经网络的安卓浏览器指纹识别方法

基金项目: 中国科学院青年创新促进会(2019163);国家自然科学基金项目(61902396);中国科学院战略性先导科技专项项目(XDC02040100);中国科学院网络测评技术重点实验室和网络安全防护技术北京市重点实验室项目
详细信息
  • 中图分类号: TP393

Android Browser Fingerprinting Identification Method Based on Bidirectional Recurrent Neural Network

Funds: This work was supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (2019163), the National Natural Science Foundation of China (61902396), the Strategic Priority Research Program of Chinese Academy of Sciences (XDC02040100), and the Project of the Key Laboratory of Network Assessment Technology at Chinese Academy of Sciences and Beijing Key Laboratory of Network Security and Protection Technology.
  • 摘要: 2010年浏览器指纹的概念被提出用于识别用户身份,目前这项技术已趋于成熟并被广泛应用在一些流行的商业网站进行广告投放.然而传统的指纹技术在追踪用户方面问题颇多,无论系统升级、浏览器更新还是篡改程序伪造导致的指纹特征值改变,都会使浏览器指纹发生变化.在对浏览器指纹属性进行研究的基础上,采集了安卓用户的浏览器指纹,提出了一种用于身份识别的监督学习框架RNNBF.RNNBF的鲁棒性分别体现在数据和模型方面,在数据方面构建基于指纹的数据增强技术生成增强数据集,在模型方面采用注意力机制令模型专注于具有不变性的指纹特征.在模型评估方面,RNNBF模型与单层LSTM模型和随机森林模型分别进行比较,当以F1-Score作为评估标准时,RNNBF模型的识别效果优于后两者,证明了RNNBF模型在动态链接指纹上具有卓越的性能.
    Abstract: Browser fingerprinting is a user identification method which has gradually matured since its concept was proposed in 2010 and is widely used in a lot of popular business websites to serve ads accurately. However, traditional fingerprinting has lots of problems in tracing users because it changes subtly no matter if the fingerprint feature value is changed due to system upgrade, browser update or tampering caused by fingerprint blocker. On the basis of research on the attributes of browser fingerprint, a great number of fingerprints from the volunteers who used Android devices are collected and supervised learning framework RNNBF for user identification is proposed. The robustness of RNNBF is reflected in the data and the model respectively. In the data aspect, the fingerprint-based data enhancement technology is used to generate the enhanced data set. In the model aspect, the attention mechanism is used to make our model focus more on the invariant fingerprint features. In terms of model evaluation, the RNNBF model is compared with the single-layer LSTM model and the random forest model. When F1-Score is used as the evaluation standard, the recognition effect of the RNNBF model is better than the latter two, which proves the excellent performance of RNNBF in dynamically linking fingerprints.
  • 期刊类型引用(7)

    1. 史涯晴,许山山,易明煜,简开宇. 基于协议模型的嵌入式软件接口测试数据生成. 陆军工程大学学报. 2024(05): 57-66 . 百度学术
    2. 高冬梅,梅新奎,宿文玲,宋笑兵. 金融分布式接口自动化测试工具设计. 智能计算机与应用. 2023(01): 149-152+157 . 百度学术
    3. 耿嘉祺,李鑫丽,祝小兰. 支持用例集并行测试的接口测试平台. 计算机系统应用. 2023(06): 91-98 . 百度学术
    4. 雷建胜,苏晓,金明磊. 一种分布式可持续集成自动化测试平台. 计算机与现代化. 2020(04): 14-18 . 百度学术
    5. 徐京京,马素霞,王海威. 一种面向多监测终端厂家服务的调用方法. 计算机与数字工程. 2020(04): 895-898 . 百度学术
    6. 虞砺琨,左万娟,于倩,陈华南,黄晨. 基于数据模型的接口用例自动生成. 测控技术. 2020(07): 24-29 . 百度学术
    7. 刘国庆,汪兴轩. 基于Charles录制会话的HTTP接口自动化测试框架设计与实现. 计算机应用与软件. 2019(06): 7-13 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  965
  • HTML全文浏览量:  3
  • PDF下载量:  452
  • 被引次数: 18
出版历程
  • 发布日期:  2020-10-31

目录

    /

    返回文章
    返回