• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

SCONV:一种基于情感分析的金融市场趋势预测方法

林培光, 周佳倩, 温玉莲

林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778. DOI: 10.7544/issn1000-1239.2020.20200494
引用本文: 林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778. DOI: 10.7544/issn1000-1239.2020.20200494
Lin Peiguang, Zhou Jiaqian, Wen Yulian. SCONV: A Financial Market Trend Forecast Method Based on Emotional Analysis[J]. Journal of Computer Research and Development, 2020, 57(8): 1769-1778. DOI: 10.7544/issn1000-1239.2020.20200494
Citation: Lin Peiguang, Zhou Jiaqian, Wen Yulian. SCONV: A Financial Market Trend Forecast Method Based on Emotional Analysis[J]. Journal of Computer Research and Development, 2020, 57(8): 1769-1778. DOI: 10.7544/issn1000-1239.2020.20200494

SCONV:一种基于情感分析的金融市场趋势预测方法

基金项目: 国家自然科学基金项目(61802230)
详细信息
  • 中图分类号: TP391

SCONV: A Financial Market Trend Forecast Method Based on Emotional Analysis

Funds: This work was supported by the National Natural Science Foundation of China(61802230).
  • 摘要: 股票市场是国家经济发展的重要组成部分,也是与我们日常生活息息相关的一个市场,股民的情绪一定程度上可以作为影响股票价格的因素之一.提出一种基于ConvLstm(convolutional long short term memory)的股票情感分析价格预测的深度学习模型SCONV(semantic convolutional).该模型通过爬取股民评价,使用LSTM(long short term memory)模型并通过word2vec,进行情感分析,提取情感向量,并得出每一日的情感权重.随后将每日股价分别与对应前1日、前3日均值、前一周均值的情感权重与股票价格一起放入ConvLstm中进行训练,再使用叠加的一层LSTM来增加准确率,并在ConvLstm与增加的LSTM之间增加dropout层,来避免过拟合.实验数据采用了3年左右阿里巴巴(BABA.us)、1.5年左右平安银行(000001.sh)、5个月左右格力电器(000651.sz),实验结果表明:相比一些传统模型,SCONV在较小的样本集上依旧可以更好地预测股票价格的走势.
    Abstract: The stock market plays a critical role in the economic development of countries, and it is also a market closely related to our daily life. The sentiment of shareholders may be judged as one of the factors affecting the stock price. This paper proposes a deep learning model of stock sentiment analysis price prediction based on convolution long short-term memory, named semantic convolution (SCONV). The model utilizes long short-term memory model and word2vec to analyze the emotion, extracts emotion vector, and to calculate the emotion weight of each day. Then we put the corresponding weights of the daily stock prices respectively to the average of the previous day, the previous three days, and the average of the previous week, together with the stock price into the ConvLstm. There is a dropout between ConvLstm and the increased LSTM to avoid over-fitting. In this paper, BABA.us, 000001.sh, 000651.sz are used as experimental data. BABA.us about 3 years, 000001.sh about 1.5 years and 000651.sz about 5 months are respectively implemented in the experiment. Compared with traditional models, the experimental results show that SCONV is still able to predict more precisely the trend of the stock price on a smaller sample set.
  • 期刊类型引用(9)

    1. 葛业波,刘文杰,顾雨晨. 融合情感分析和GAN-TrellisNet的股价预测方法. 计算机工程与应用. 2024(12): 314-324 . 百度学术
    2. 高霞. 基于机器学习算法的金融市场趋势预测研究. 微型电脑应用. 2023(02): 30-32+40 . 百度学术
    3. 李庆涛,林培光,王基厚,周佳倩,张燕,蹇木伟. 基于板块效应的深度学习股价走势预测方法. 南京师范大学学报(工程技术版). 2022(01): 30-38 . 百度学术
    4. 刘月娟,王武. 基于多特征融合的股票走势预测研究. 云南民族大学学报(自然科学版). 2022(02): 227-234 . 百度学术
    5. 马朋飞,史树斌,张小领. 移动式无线充电的无线传感器网络的数据收集分析. 数字技术与应用. 2022(08): 61-63 . 百度学术
    6. 周佳倩,林培光,李庆涛,王基厚,刘利达. MDDE:一种基于投资组合的金融市场趋势分析方法. 南京大学学报(自然科学). 2022(05): 876-883 . 百度学术
    7. 姚远,张朝阳. 基于HP-LSTM模型的股指价格预测方法. 计算机工程与应用. 2021(24): 296-304 . 百度学术
    8. 王基厚,林培光,周佳倩,李庆涛,张燕,蹇木伟. 结合公司财务报表数据的股票指数预测方法. 计算机应用. 2021(12): 3632-3636 . 百度学术
    9. 辛强伟,唐云凯. 多维度数据组合的人工智能系统性能优化分析. 数字技术与应用. 2020(10): 36-38 . 百度学术

    其他类型引用(38)

计量
  • 文章访问数:  1603
  • HTML全文浏览量:  4
  • PDF下载量:  977
  • 被引次数: 47
出版历程
  • 发布日期:  2020-07-31

目录

    /

    返回文章
    返回