Linear Regularized Functional Logistic Model
-
摘要: 函数型数据的模式识别问题广泛存在于医学、经济、金融、生物、气象等各个领域,探索更具泛化性能的分类器对准确挖掘函数型数据当中隐藏的知识至关重要.针对经典函数Logistic模型的泛化性能不高的问题,提出了线性正则化函数Logistic模型,该模型的生成通过求解一个优化问题实现.在该优化问题当中,前项是基于函数样例的似然函数构造的,用于控制函数样例的分类性能;后项是正则化项,用于控制模型的复杂性.同时,这2项进行了线性加权组合,这样,限制了正则化子的取值范围,方便给出一个经验最优参数,然后可在这一经验最优参数的指导下选出一个适当的函数主成分基个数下的Logistic模型用于函数型数据的分类.实验结果表明:选出的线性正则化函数Logistic模型的泛化性能优于经典的函数Logistic模型.
-
关键词:
- 函数型数据 /
- 函数主成分分析 /
- 基表示 /
- Logistic回归 /
- 线性正则化
Abstract: The pattern recognition problems of functional data widely exist in various fields such as medicine, economy, finance, biology and meteorology, therefore, to explore classifiers with more better generalized performance is critical to accurately mining the hidden knowledge in functional data. Aiming at the low generalization performance of the classical functional logistic model, a linear regularized functional logistic model based on functional principal component representation is proposed and the model is acquired by means of solving an optimization problem. In the optimization problem, the former term is constructed based on the likelihood function of training functional samples to control the classification performance of functional samples. The latter term is the regularization term, which is used to control the complexity of the model. At the same time, the two terms are combined by linear weighted combination, which limits the value range of the regularizer and makes it convenient to give an empirical optimal parameter. Then, under the guidance of this empirical optimal parameter, a logistic model with the appropriate number of principal components can be selected for the classification of functional data. The experimental results show that the generalization performance of the selected linear regularized functional logistic model is better than that of the classical logistic model. -
-
期刊类型引用(9)
1. 谢虎,杨占杰,张伟,何超林,谢型浪,马海鑫. 基于混合蝙蝠算法的高比例风电电力系统调度方法. 可再生能源. 2023(06): 804-809 . 百度学术 2. 余明洋,沈斌. 多变国际形势下新能源汽车销量分析——基于突发因素的复合预测模型. 中国商论. 2023(12): 164-168 . 百度学术 3. 瞿佳佳,金婷. 基于医疗设备故障数据集的医疗设备可靠性分析. 中国医疗设备. 2022(01): 98-101 . 百度学术 4. 邓楠,罗幼喜. 函数型Logistic回归模型研究与应用. 湖北工业大学学报. 2022(01): 115-120 . 百度学术 5. 孟银凤,杨佳宇,曹付元. 函数型数据的分裂转移式层次聚类算法. 山东大学学报(工学版). 2022(01): 19-27 . 百度学术 6. 齐娜,马琳. 基于Logistic模型的日语翻译机器自动校准方法研究. 自动化与仪器仪表. 2022(07): 247-251 . 百度学术 7. 朱益冬,陈玉明,卢俊文,曾念峰. 融合Logistic回归与Tabnet模型的P2P网贷违约预测方法. 厦门理工学院学报. 2022(03): 38-47 . 百度学术 8. 魏鹏,江克贵. 基于FWA-Logistic方法的概率积分动态参数预测. 煤炭工程. 2021(07): 123-127 . 百度学术 9. 金海波,马海强. 相幅组合的函数型数据特征提取方法研究. 计算机应用研究. 2021(08): 2354-2358 . 百度学术 其他类型引用(10)
计量
- 文章访问数: 920
- HTML全文浏览量: 1
- PDF下载量: 223
- 被引次数: 19