Linear Regularized Functional Logistic Model
-
摘要: 函数型数据的模式识别问题广泛存在于医学、经济、金融、生物、气象等各个领域,探索更具泛化性能的分类器对准确挖掘函数型数据当中隐藏的知识至关重要.针对经典函数Logistic模型的泛化性能不高的问题,提出了线性正则化函数Logistic模型,该模型的生成通过求解一个优化问题实现.在该优化问题当中,前项是基于函数样例的似然函数构造的,用于控制函数样例的分类性能;后项是正则化项,用于控制模型的复杂性.同时,这2项进行了线性加权组合,这样,限制了正则化子的取值范围,方便给出一个经验最优参数,然后可在这一经验最优参数的指导下选出一个适当的函数主成分基个数下的Logistic模型用于函数型数据的分类.实验结果表明:选出的线性正则化函数Logistic模型的泛化性能优于经典的函数Logistic模型.
-
关键词:
- 函数型数据 /
- 函数主成分分析 /
- 基表示 /
- Logistic回归 /
- 线性正则化
Abstract: The pattern recognition problems of functional data widely exist in various fields such as medicine, economy, finance, biology and meteorology, therefore, to explore classifiers with more better generalized performance is critical to accurately mining the hidden knowledge in functional data. Aiming at the low generalization performance of the classical functional logistic model, a linear regularized functional logistic model based on functional principal component representation is proposed and the model is acquired by means of solving an optimization problem. In the optimization problem, the former term is constructed based on the likelihood function of training functional samples to control the classification performance of functional samples. The latter term is the regularization term, which is used to control the complexity of the model. At the same time, the two terms are combined by linear weighted combination, which limits the value range of the regularizer and makes it convenient to give an empirical optimal parameter. Then, under the guidance of this empirical optimal parameter, a logistic model with the appropriate number of principal components can be selected for the classification of functional data. The experimental results show that the generalization performance of the selected linear regularized functional logistic model is better than that of the classical logistic model. -
-
期刊类型引用(7)
1. 黄玲,黄镇伟,黄梓源,关灿荣,高月芳,王昌栋. 图卷积宽度跨域推荐系统. 计算机研究与发展. 2024(07): 1713-1729 . 本站查看
2. 杨玲玲. 基于HM与LWR算法的电子设备MCS推荐优化. 山西电子技术. 2024(04): 22-24 . 百度学术
3. 郑升旻,付晓东. 利用混合Plackett-Luce模型的不完整序数偏好预测. 计算机应用. 2024(10): 3105-3113 . 百度学术
4. 杜兆芳. 基于协同排序学习算法的移动群智感知任务推荐. 电子产品世界. 2023(09): 64-66+70 . 百度学术
5. 朱丽丽. 随机森林算法下列表级排序学习推荐系统设计. 淮阴工学院学报. 2023(05): 62-68 . 百度学术
6. 曹玉红,赵乙,陈佳桦. 兼容异构数据的稳定评估模型. 小型微型计算机系统. 2021(09): 2011-2016 . 百度学术
7. 林子楠,刘杜钢,潘微科,明仲. 面向推荐系统中有偏和无偏一元反馈建模的三任务变分自编码器. 信息安全学报. 2021(05): 110-127 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 928
- HTML全文浏览量: 1
- PDF下载量: 224
- 被引次数: 11