• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于列表级排序的深度生成推荐方法

孙肖依, 刘华锋, 景丽萍, 于剑

孙肖依, 刘华锋, 景丽萍, 于剑. 基于列表级排序的深度生成推荐方法[J]. 计算机研究与发展, 2020, 57(8): 1697-1706. DOI: 10.7544/issn1000-1239.2020.20200497
引用本文: 孙肖依, 刘华锋, 景丽萍, 于剑. 基于列表级排序的深度生成推荐方法[J]. 计算机研究与发展, 2020, 57(8): 1697-1706. DOI: 10.7544/issn1000-1239.2020.20200497
Sun Xiaoyi, Liu Huafeng, Jing Liping, Yu Jian. Deep Generative Recommendation Based on List-Wise Ranking[J]. Journal of Computer Research and Development, 2020, 57(8): 1697-1706. DOI: 10.7544/issn1000-1239.2020.20200497
Citation: Sun Xiaoyi, Liu Huafeng, Jing Liping, Yu Jian. Deep Generative Recommendation Based on List-Wise Ranking[J]. Journal of Computer Research and Development, 2020, 57(8): 1697-1706. DOI: 10.7544/issn1000-1239.2020.20200497

基于列表级排序的深度生成推荐方法

基金项目: 国家自然科学基金项目(61822601,61773050,61632004);北京市自然科学基金项目(Z180006);北京市科委项目(Z181100008918012);国家重点研发计划项目(2017YFC1703506);中央高校基本科研业务费专项资金(2019JBZ110)
详细信息
  • 中图分类号: TP181

Deep Generative Recommendation Based on List-Wise Ranking

Funds: This work was supported by the National Natural Science Foundation of China (61822601, 61773050, 61632004), the Beijing Natural Science Foundation (Z180006), the Program of Beijing Municipal Science & Technology Commission (Z181100008918012), the National Key Research and Development Program of China (2017YFC1703506), and the Fundamental Research Funds for the Central Universities (2019JBZ110).
  • 摘要: 变分自编码器(variational autoencoder, VAE)近年来在推荐领域有着很成功的应用.这种非线性概率模型的优势在于它可以突破线性模型有限的建模能力,而线性模型目前仍然在协同过滤研究中占主导地位.尽管基于变分自编码器的推荐方法已经取得了优越的表现,但仍存在一些未解决的问题,例如无法针对隐式反馈的推荐数据为用户生成个性化的推荐排序列表.因此,通过借助多项式似然对变分自编码器实施基于列表的排序策略,提出了一种深度生成推荐模型.该模型具有同时生成点级隐式反馈数据并为每个用户创建列表式偏好排序的能力.为了将排序损失与变分自编码器损失结合起来,采取归一化累计损失增益(normalized cumulative loss gain, NDCG)作为排名损失,并通过平滑函数进行近似.在3个真实世界数据集上(MovieLens-100k,XuetangX和Jester)进行了实验.实验结果表明:结合了列表级排序的变分自编码器在推荐个性化列表所有评价指标上,相比于其他基线模型拥有更出色的表现.
    Abstract: Variational autoencoders have been successfully applied in recommendation field in recent years. The advantage of this kind of nonlinear probabilistic model is that it can break through the limited modeling ability of linear model, which is still dominant in collaborative filtering research. Although the recommendation method based on variational autoencoder has achieved excellent performance, there are still some unresolved problems, such as the inability to generate personalized recommendation ranking lists for users based on the recommendation data of implicit feedback. Therefore, in this paper, we propose a depth generation recommendation model for variational autoencoder by using polynomial likelihood to implement list-based ranking strategies. The model has the ability to simultaneously generate point-wise implicit feedback data and create a list-like ranking list for each user. To seamlessly combine ranking loss with variational autoencoder loss, the normalized cumulative loss gain (NDCG) is adopted here and approximated with a smoothed function. A series of experiments on three real-world datasets (MovieLens-100k, XuetangX and Jester) have been conducted. Experimental results show that the variational autoencoder combined with list-wise ranking method has better performance in generate a personalized recommendation list.
  • 期刊类型引用(9)

    1. 谢虎,杨占杰,张伟,何超林,谢型浪,马海鑫. 基于混合蝙蝠算法的高比例风电电力系统调度方法. 可再生能源. 2023(06): 804-809 . 百度学术
    2. 余明洋,沈斌. 多变国际形势下新能源汽车销量分析——基于突发因素的复合预测模型. 中国商论. 2023(12): 164-168 . 百度学术
    3. 瞿佳佳,金婷. 基于医疗设备故障数据集的医疗设备可靠性分析. 中国医疗设备. 2022(01): 98-101 . 百度学术
    4. 邓楠,罗幼喜. 函数型Logistic回归模型研究与应用. 湖北工业大学学报. 2022(01): 115-120 . 百度学术
    5. 孟银凤,杨佳宇,曹付元. 函数型数据的分裂转移式层次聚类算法. 山东大学学报(工学版). 2022(01): 19-27 . 百度学术
    6. 齐娜,马琳. 基于Logistic模型的日语翻译机器自动校准方法研究. 自动化与仪器仪表. 2022(07): 247-251 . 百度学术
    7. 朱益冬,陈玉明,卢俊文,曾念峰. 融合Logistic回归与Tabnet模型的P2P网贷违约预测方法. 厦门理工学院学报. 2022(03): 38-47 . 百度学术
    8. 魏鹏,江克贵. 基于FWA-Logistic方法的概率积分动态参数预测. 煤炭工程. 2021(07): 123-127 . 百度学术
    9. 金海波,马海强. 相幅组合的函数型数据特征提取方法研究. 计算机应用研究. 2021(08): 2354-2358 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  917
  • HTML全文浏览量:  2
  • PDF下载量:  420
  • 被引次数: 19
出版历程
  • 发布日期:  2020-07-31

目录

    /

    返回文章
    返回