Concept Drift Class Detection Based on Time Window
-
摘要: 流数据作为一种新型数据,在各个领域均有应用,其快速、大量及持续不断的特点使得单遍精准扫描成为在线学习算法的必备特质.在流数据不断产生过程中,往往会发生概念漂移,目前对于概念漂移节点检测的研究相对成熟,然而实际问题中学习环境因素朝不同方向发展往往会导致流数据中概念漂移类别的多样性,这给流数据挖掘及在线学习带来了新的挑战.针对这个问题,提出一种基于时序窗口的概念漂移类别检测(concept drift class detection based on time window, CD-TW)方法.该方法借助栈和队列对流数据进行存取,借助窗口机制对流数据进行分块学习.首先创建2个分别加载历史数据和当前数据的基础节点时序窗口,通过比较二者所包含数据的分布变化情况来检测概念漂移节点.然后创建加载漂移节点后部分数据的跨度时序窗口,通过分析该窗口中数据分布的稳定性检测漂移跨度,进而判断概念漂移类别.实验结果表明该方法不仅能够精确定位概念漂移节点,同时在漂移类别判断方面也表现出良好性能.Abstract: As a new type of data, streaming data has been applied in various application fields. Its fast, massive and continuous characteristics make single pass and accurate scanning become essential features of online learning. In the process of continuous generation of streaming data, concept drift often occurs. At present, the research on concept drift detection is relatively mature. However, in reality, the development of learning environment factors in different directions often leads to the diversity of concept drift class in streaming data, which brings new challenges to streaming data mining and online learning. To solve this problem, this paper proposes a concept drift class detection method based on time window (CD-TW). In this method, stack and queue are used to access the data, and window mechanism is used to learn streaming data in chunks. This method detects concept drift site by creating two basic site time windows which load historical data and current data respectively and comparing the distribution changes of the data contained in them. Then, a span time window loading partial data after drift site is created. The drift span is obtained by analyzing the distribution stability of the data in span time window, which is further used to judge the concept drift class. The results of experiment demonstrate that CD-TW can not only detect concept drift site accurately, but also show good performance in judging the class of concept drift.
-
Keywords:
- streaming data /
- concept drift /
- time window /
- drift span /
- concept drift class
-
-
期刊类型引用(4)
1. 钱罗雄,陈梅,马学艳,张弛,张锦宏. 自适应张量奇异值收缩的多视角聚类. 计算机研究与发展. 2025(03): 733-750 . 本站查看
2. 赵兴旺,侯哲栋,姚凯旋,梁吉业. 基于注意力机制的两阶段融合多视图图聚类. 清华大学学报(自然科学版). 2024(01): 1-12 . 百度学术
3. 赵振廷,赵旭俊. 多样性约束和高阶信息挖掘的多视图聚类. 计算机应用研究. 2024(08): 2309-2314 . 百度学术
4. 李顺勇,许晓丽. 基于信息熵加权的多视图子空间聚类算法. 陕西科技大学学报. 2023(02): 207-214 . 百度学术
其他类型引用(12)
计量
- 文章访问数: 334
- HTML全文浏览量: 9
- PDF下载量: 271
- 被引次数: 16