• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

有限样本条件下欠规范手语识别容错特征扩充

孔乐毅, 张金艺, 楼亮亮

孔乐毅, 张金艺, 楼亮亮. 有限样本条件下欠规范手语识别容错特征扩充[J]. 计算机研究与发展, 2022, 59(3): 683-693. DOI: 10.7544/issn1000-1239.20200789
引用本文: 孔乐毅, 张金艺, 楼亮亮. 有限样本条件下欠规范手语识别容错特征扩充[J]. 计算机研究与发展, 2022, 59(3): 683-693. DOI: 10.7544/issn1000-1239.20200789
Kong Leyi, Zhang Jinyi, Lou Liangliang. Tolerance Feature Extension of Substandard Sign Language Recognition with Finite Samples[J]. Journal of Computer Research and Development, 2022, 59(3): 683-693. DOI: 10.7544/issn1000-1239.20200789
Citation: Kong Leyi, Zhang Jinyi, Lou Liangliang. Tolerance Feature Extension of Substandard Sign Language Recognition with Finite Samples[J]. Journal of Computer Research and Development, 2022, 59(3): 683-693. DOI: 10.7544/issn1000-1239.20200789
孔乐毅, 张金艺, 楼亮亮. 有限样本条件下欠规范手语识别容错特征扩充[J]. 计算机研究与发展, 2022, 59(3): 683-693. CSTR: 32373.14.issn1000-1239.20200789
引用本文: 孔乐毅, 张金艺, 楼亮亮. 有限样本条件下欠规范手语识别容错特征扩充[J]. 计算机研究与发展, 2022, 59(3): 683-693. CSTR: 32373.14.issn1000-1239.20200789
Kong Leyi, Zhang Jinyi, Lou Liangliang. Tolerance Feature Extension of Substandard Sign Language Recognition with Finite Samples[J]. Journal of Computer Research and Development, 2022, 59(3): 683-693. CSTR: 32373.14.issn1000-1239.20200789
Citation: Kong Leyi, Zhang Jinyi, Lou Liangliang. Tolerance Feature Extension of Substandard Sign Language Recognition with Finite Samples[J]. Journal of Computer Research and Development, 2022, 59(3): 683-693. CSTR: 32373.14.issn1000-1239.20200789

有限样本条件下欠规范手语识别容错特征扩充

基金项目: 高等学校学科创新引智计划(111)项目(D20031);上海市教委重点学科资助项目(J50104)
详细信息
  • 中图分类号: TP391.41; TP183

Tolerance Feature Extension of Substandard Sign Language Recognition with Finite Samples

Funds: This work was supported by the Subject Innovation and Talent Introduction Program (111) in Colleges and Universities (D20031) and the Key Disciplines Funded by Shanghai Education Commission(J50104).
  • 摘要: 生活中似是而非的手语表达语义含糊,欠规范的手势动作易混淆,同时从有限样本中难以获得充足特征用于训练手语识别模型,模型容易过拟合进而导致识别准确率较低.针对此问题,提出一种在有限样本条件下扩充欠规范手语识别容错特征的表示学习方法.该方法基于手语表达时人体骨架的运动信息,面向手语的时空关联性构建自编码器,从手语语料库中少量原始样本提取标准特征;然后利用生成对抗网络从标准特征产生大量欠规范样本,再通过自编码器扩充容错特征,构建新的容错特征集用于后续任务.实验结果表明:该方法在有限样本条件下,产生的欠规范手语样本语义清晰,新的容错特征集中不同类别的特征易于划分.在中文手语数据集上利用该方法构建容错特征集,训练手语识别模型达到97.5%的识别准确率,证明其具有广泛的应用前景.
    Abstract: The expression of specious sign language in life is ambiguous, and the semantics of substandard gesture actions are easy to be confused. At the same time, it is difficult to obtain sufficient features for training sign language recognition model with finite samples, and the model is easy to over fit when it is too complex, which leads to low recognition accuracy. In order to solve this problem, we propose a representation learning method to expand the tolerant features of sub-standard sign language recognition with finite samples. This method based on the skeleton information of human body, facing the spatiotemporal correlation of sign language, constructes a autoencoder to extract standard features from a small number of original samples in sign language corpus; a large number of substandard samples are generated from standard features by generative adversarial networks, and then fault-tolerant features are extended by autoencoder to construct new features for subsequent sign language recognition tasks. The experimental results show that, under the condition of limited samples, the semantics of the samples generated by this method are clear, and the features of different semantics in the new feature set are easy to be divided. Using this method to build tolerant feature set in CSL dataset, the training sign language recognition model achieves 97.5% recognition accuracy, which indicates that it has broad application prospects.
  • 期刊类型引用(2)

    1. 肖金桐,田亮,王艳君. 小时间尺度网络数据传输故障识别数学建模. 计算机仿真. 2024(06): 507-511 . 百度学术
    2. 彭冲,张金艺,楼亮亮. 基于条件生成对抗网络的手语样本骨架缺失关节点修复. 计算机辅助设计与图形学学报. 2023(03): 423-433 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  202
  • HTML全文浏览量:  0
  • PDF下载量:  80
  • 被引次数: 3
出版历程
  • 发布日期:  2022-02-28

目录

    /

    返回文章
    返回