• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

一种基于K-shell影响力最大化的路径择优计算迁移算法

乐光学, 陈光鲁, 卢敏, 杨晓慧, 刘建华, 黄淳岚, 杨忠明

乐光学, 陈光鲁, 卢敏, 杨晓慧, 刘建华, 黄淳岚, 杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法[J]. 计算机研究与发展, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
引用本文: 乐光学, 陈光鲁, 卢敏, 杨晓慧, 刘建华, 黄淳岚, 杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法[J]. 计算机研究与发展, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
Citation: Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
乐光学, 陈光鲁, 卢敏, 杨晓慧, 刘建华, 黄淳岚, 杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法[J]. 计算机研究与发展, 2021, 58(9): 2025-2039. CSTR: 32373.14.issn1000-1239.2021.20200338
引用本文: 乐光学, 陈光鲁, 卢敏, 杨晓慧, 刘建华, 黄淳岚, 杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法[J]. 计算机研究与发展, 2021, 58(9): 2025-2039. CSTR: 32373.14.issn1000-1239.2021.20200338
Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. CSTR: 32373.14.issn1000-1239.2021.20200338
Citation: Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. CSTR: 32373.14.issn1000-1239.2021.20200338

一种基于K-shell影响力最大化的路径择优计算迁移算法

基金项目: 国家自然科学基金项目(U19B2015);浙江省“鲲鹏行动”计划支持项目
详细信息
  • 中图分类号: TP393

A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization

Funds: This work was supported by the National Natural Science Foundation of China (U19B2015) and the Top-level Talent Project of Zhejiang Province.
  • 摘要: 在移动边缘计算网络中,高效的计算迁移算法是移动边缘计算的重要问题之一.为了提高计算迁移算法性能,应用同类问题的相互转换性和最大化影响力模型,利用K-shell算法对边缘服务器进行等级划分,考虑边缘服务器负载过重问题,构建路径重叠(path overlap, PO)算法,引入通信质量、交互强度、列队处理能力等指标进行边缘服务器路径优化,将优化计算任务迁移路径问题转化为社会网络影响力最大化问题求解.基于K-shell影响力最大化思想,联合优化改进贪心与启发式算法,提出一种K-shell影响力最大化计算迁移(K-shell influence maximization computation offloading, Ks-IMCO)算法,求解计算迁移问题.与随机分配(random allocation, RA)算法、支持路径切换选择的(path selection with handovers, PSwH)算法在不同实验场景下对比分析,Ks-IMCO算法的能耗、延迟等明显提升,能有效提高边缘计算网络计算迁移的效率.
    Abstract: As edge computing and cloud computing develop in a rapid speed and integrate with each other, resources and services gradually offload from the core network to the edge of the network. Efficient computation offloading algorithm is one of the most important problems in mobile edge computing networks. In order to improve the performance of the algorithm, a computation offloading algorithm with path selection based on K-shell influence maximization is proposed. The K-shell method is used to grade the edge servers by applying the convertibility and maximizing influence model of similar problems. Otherwise, considering the problem of excessive load of edge servers, path overlap (PO) algorithm is constructed, and indicators such as the communication quality, interaction strength, and queue processing ability, etc. are introduced to optimize the performance of the algorithm. The offloading path problem of the optimization calculation task is transformed into the social network impact maximization problem. Based on the idea of maximizing K-shell influence, greedy and heuristic algorithms are optimized and improved, and the K-shell influence maximization computation offloading (Ks-IMCO) algorithm is proposed to solve the problem of computational offloading. Through the comparative analysis of Ks-IMCO and random allocation (RA), path selection with handovers (PSwH) algorithm experiments, the energy consumption and delay of Ks-IMCO algorithm have been significantly improved, which can effectively improve the efficiency of edge computing network computing offloading.
  • 期刊类型引用(9)

    1. 潘海霞,曹宁. 面向无线网络的数据传输自适应拥塞控制. 自动化与仪器仪表. 2024(01): 75-78+84 . 百度学术
    2. 江宝英,廖锋. 基于云计算的多媒体网络数据传输拥塞控制方法. 长江信息通信. 2024(11): 96-98 . 百度学术
    3. 吴欣. 基于流媒体技术的医学档案信息资源数字化传输. 微型电脑应用. 2023(08): 213-216 . 百度学术
    4. 朱振伸,范黎林,赵敬云. 多媒体网络中基于QoS的自适应SPC仿真. 计算机仿真. 2022(01): 213-217 . 百度学术
    5. 范洁,谢鑫,陈战胜. 关键姿态映射下视频动态帧目标定位方法. 计算机仿真. 2022(03): 156-159+248 . 百度学术
    6. 王健,王仲宇,朱文凯,孙洁茹,潘瑞娟,陈晓宁. 基于可穿戴设备的无线组网输液监控系统. 传感器与微系统. 2022(06): 106-108+113 . 百度学术
    7. 廖彬彬,张广兴,刁祖龙,谢高岗. 基于深度强化学习的MPTCP动态编码调度系统. 高技术通讯. 2022(07): 727-736 . 百度学术
    8. 刘伟,张涛. 移动边缘计算中基于视频内容协作分发的联合激励机制. 计算机应用研究. 2021(09): 2803-2810 . 百度学术
    9. 肖巍,卢劲伉,李博深,吴启槊,白英东,潘超. Faster RCNN优化实时人数流量检测. 长春工业大学学报. 2020(04): 369-374 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 14
出版历程
  • 发布日期:  2021-08-31

目录

    /

    返回文章
    返回