Node-Constraint Store-and-Forward Scheduling Method for Inter-Datacenter Networks
-
摘要: 借助海量数据中心存储,通过存储转发(store-and-forward, SnF)调度大数据传输,已被证明能有效解决跨数据中心间大数据传输难题.然而,多数现有调度方法将数据途经的所有网络节点(例如数据中心)均纳入SnF调度决策,导致其计算复杂度过高,难以为大规模网络提供实时调度服务.针对跨数据中心光网络场景,给出SnF模型,量化分析存储节点数量对调度问题性能与复杂度的影响.研究表明:在一定条件下,无需将所有节点都纳入调度决策也可获得良好的调度性能.由此,提出了节点约束SnF调度方法.该方法的特点在于:1)仅将部分数据途经节点纳入调度决策,降低调度问题求解难度;2)引入拓扑抽象,将被选节点间链路状态压缩,缩小调度问题规模、提高算法求解效率.仿真结果表明:在阻塞率和算法计算时间方面,该方法优于现有调度方法.Abstract: Performing store-and-forward (SnF) using abundant storage resources inside datacenters has been proven to be effective in overcoming the challenges faced by inter-datacenter bulk transfers. Most prior studies attempt to fully leverage the network infrastructure and maximize the flexibility of the SnF scheme. Their proposed scheduling methods hence aim at a full storage placement where all network nodes (e.g., datacenters) are SnF-enabled and every node is taken into account in the scheduling process. However, the computational complexity of the prior methods exponentially increases with the network scale. As a result, the prior methods may become too complicated to implement for large-scale networks and online scheduling. In this work, based on the inter-datacenter optical network, SnF models are presented to quantify the impact of the number of SnF-enabled nodes on the performance and the complexity of the SnF scheduling problem. Our key findings show that taking a few SnF-enabled nodes into account in the scheduling process can provide high performance while maintaining low complexity under certain circumstances. It is unnecessary to take every node into account in the scheduling process. Therefore, a node-constraint SnF scheduling method is proposed, whose features are twofold: 1) by taking a portion of nodes into account, it reduces the complexity of the SnF scheduling problem; 2) by introducing a topology abstraction, it condenses the link states between the considered nodes and hence reduces the problem size, which improves its efficiency in solving the SnF scheduling problem. Simulations demonstrate that the proposed method outperforms the prior method in terms of blocking probability and computation time.
-
Keywords:
- big data transfers /
- inter-datacenter networks /
- wavelength routing /
- storage /
- scheduling method
-
-
期刊类型引用(11)
1. 李萍,刘金金. 基于改进模糊聚类算法的大数据随机挖掘仿真. 计算机仿真. 2024(02): 496-499+521 . 百度学术
2. 李来存. 基于物联网技术的信息系统数据存储系统. 信息技术. 2024(05): 120-126+132 . 百度学术
3. 何芳州,王祉淇. 知识图谱特征重构下无线传感网络数据存储恢复. 传感技术学报. 2024(07): 1265-1270 . 百度学术
4. 万晓云,张泰,程妍. 基于弹性空间模型的实验室网络数据存储算法. 计算机仿真. 2024(09): 368-371+428 . 百度学术
5. 梁志宏. 电力异构数据集群存储动态副本选择系统. 电子设计工程. 2024(24): 105-109 . 百度学术
6. 孙淳晔,庞亚南,邓芳. 分布式存储在运营商中的应用与研究. 广东通信技术. 2023(02): 71-74 . 百度学术
7. 谢振杰,付伟. 基于可审计多副本的云存储差错副本恢复机制. 计算机应用. 2023(04): 1102-1108 . 百度学术
8. 姜宇鸣,周益民. 海量机载激光点云数据分布式分片存储方法研究. 电子器件. 2023(04): 978-983 . 百度学术
9. 辛明勇,祝健杨,徐长宝,姚浩,刘德宏. 基于循环神经网络的多核处理器层次化存储技术. 电子设计工程. 2023(22): 121-124+129 . 百度学术
10. 梁杨,丁长松,胡志刚. 基于“推荐-学习”的两阶段数据布局策略. 南京师大学报(自然科学版). 2023(04): 80-90 . 百度学术
11. 白亮,郭新营,潘旭东,叶德力·波拉提,古再奴尔·艾再孜. 基于大数据的信息系统资源利用率人工智能预测方法. 电力大数据. 2022(06): 43-48 . 百度学术
其他类型引用(8)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 19