• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于空间变换的随机森林算法

关晓蔷, 王文剑, 庞继芳, 孟银凤

关晓蔷, 王文剑, 庞继芳, 孟银凤. 基于空间变换的随机森林算法[J]. 计算机研究与发展, 2021, 58(11): 2485-2499. DOI: 10.7544/issn1000-1239.2021.20200523
引用本文: 关晓蔷, 王文剑, 庞继芳, 孟银凤. 基于空间变换的随机森林算法[J]. 计算机研究与发展, 2021, 58(11): 2485-2499. DOI: 10.7544/issn1000-1239.2021.20200523
Guan Xiaoqiang, Wang Wenjian, Pang Jifang, Meng Yinfeng. Space Transformation Based Random Forest Algorithm[J]. Journal of Computer Research and Development, 2021, 58(11): 2485-2499. DOI: 10.7544/issn1000-1239.2021.20200523
Citation: Guan Xiaoqiang, Wang Wenjian, Pang Jifang, Meng Yinfeng. Space Transformation Based Random Forest Algorithm[J]. Journal of Computer Research and Development, 2021, 58(11): 2485-2499. DOI: 10.7544/issn1000-1239.2021.20200523
关晓蔷, 王文剑, 庞继芳, 孟银凤. 基于空间变换的随机森林算法[J]. 计算机研究与发展, 2021, 58(11): 2485-2499. CSTR: 32373.14.issn1000-1239.2021.20200523
引用本文: 关晓蔷, 王文剑, 庞继芳, 孟银凤. 基于空间变换的随机森林算法[J]. 计算机研究与发展, 2021, 58(11): 2485-2499. CSTR: 32373.14.issn1000-1239.2021.20200523
Guan Xiaoqiang, Wang Wenjian, Pang Jifang, Meng Yinfeng. Space Transformation Based Random Forest Algorithm[J]. Journal of Computer Research and Development, 2021, 58(11): 2485-2499. CSTR: 32373.14.issn1000-1239.2021.20200523
Citation: Guan Xiaoqiang, Wang Wenjian, Pang Jifang, Meng Yinfeng. Space Transformation Based Random Forest Algorithm[J]. Journal of Computer Research and Development, 2021, 58(11): 2485-2499. CSTR: 32373.14.issn1000-1239.2021.20200523

基于空间变换的随机森林算法

基金项目: 国家自然科学基金项目(61876103,61673249,U1805263,62006148);山西省重点研发计划项目(201903D421050);山西省1331工程项目
详细信息
  • 中图分类号: TP181

Space Transformation Based Random Forest Algorithm

Funds: This work was supported by the National Natural Science Foundation of China (61876103, 61673249, U1805263, 62006148), the Key Research and Development Program of Shanxi Province (201903D421050), and the 1331 Engineering Project of Shanxi Province.
  • 摘要: 随机森林是机器学习领域中一种常用的分类算法,具有适用范围广且不易过拟合等优点.为了提高随机森林处理多分类问题的能力,提出一种基于空间变换的随机森林算法(space transformation based random forest algorithm, ST-RF).首先,给出一种考虑优先类别的线性判别分析方法(priority class based linear discriminant analysis, PCLDA),利用针对优先类别的投影矩阵对样本进行空间变换,以增强优先类别样本与其他类别样本的区分效果.进而,将PCLDA方法引入随机森林构建过程中,在为每棵决策树随机选择一个优先类别保证随机森林多样性的基础上,利用PCLDA方法创建侧重于不同优先类别的决策树,以提高单棵决策树的分类准确性,从而实现集成模型整体分类性能的有效提升.最后,在10个标准数据集上对ST-RF算法与7种典型随机森林算法进行比较分析,验证所提算法的有效性,并将基于PCLDA的空间变换策略应用到对比算法中,对改进前后的算法性能进行比较分析.实验结果表明:ST-RF算法在处理多分类问题方面具有明显优势,所提出的空间变换策略具有较强的普适性,可以显著提升原算法的分类性能.
    Abstract: Random forest is a commonly used classification algorithm in the field of machine learning, which has the advantages of wide application and not easy overfitting. In order to improve the overall performance of random forest in dealing with multi-classification problems, a space transformation based random forest algorithm (ST-RF) is proposed. Firstly, a priority class based linear discriminant analysis (PCLDA) method is designed. On the basis of obtaining the projection matrix for priority class, the discrimination effect between priority class samples and other classes samples is enhanced by spatial transformation. Then, PCLDA method is introduced into the process of random forest construction. By selecting the priority class randomly for each decision tree, the diversity among decision trees in random forests is guaranteed. By using the PCLDA method to create decision trees with different priority classes, the classification accuracy of individual decision tree is improved. Thus, the overall classification performance of the integrated model is effectively improved. By comparing the ST-RF algorithm with seven typical random forest algorithms in 10 standard datasets, the effectiveness of the proposed algorithm is verified. Moreover, the spatial transformation strategy based on PCLDA is applied to the above comparison algorithms, and the performance of the algorithms before and after adding the spatial transformation strategy are compared and analyzed. The experimental results show that ST-RF algorithm has obvious advantages in dealing with multi-classification problems, and the proposed spatial transformation strategy has strong universality, which can significantly improve the classification performance of the original algorithm.
  • 期刊类型引用(12)

    1. 李晓静,杨秀杰. 云计算环境下多模态异构网络数据安全存储方法. 现代电子技术. 2025(06): 63-67 . 百度学术
    2. 李林,左天才,杜泽新,谢志奇. 基于LSM树的在线监测数据安全存储系统设计. 电子设计工程. 2024(07): 63-67 . 百度学术
    3. 闫丽飞,褚宇宁,赵维伟,何壮壮,刘晓强. 大规模非结构化数据资源快速存储方法研究. 集成电路与嵌入式系统. 2024(04): 77-81 . 百度学术
    4. 何博宇,潘洪志. 大数据环境下位置轨迹安全存储系统研究与实现. 电脑知识与技术. 2024(10): 77-80 . 百度学术
    5. 巢成,蒲非凡,许建秋,高云君. 基于空间位置关系的轨迹数据高效降维和查询算法. 计算机研究与发展. 2024(07): 1771-1790 . 本站查看
    6. 王芳,王建民,邵芬红. 多信道无线通信网络动态数据完整性存储仿真. 计算机仿真. 2024(07): 451-455 . 百度学术
    7. 张铠,黄晋,汪希. 基于区块链技术的网络信息安全访问控制方法. 信息技术与信息化. 2024(09): 197-200 . 百度学术
    8. 马明扬,杨洪勇,刘飞. 基于强化学习的双人博弈差分隐私保护研究. 复杂系统与复杂性科学. 2024(04): 107-114 . 百度学术
    9. 李玉光,郗海龙. 物联网异构数据库分层访问算法仿真. 计算机仿真. 2023(03): 490-493+498 . 百度学术
    10. 吕舰. 基于国密算法的网络通信传输数据安全存储方法. 长江信息通信. 2023(04): 171-174 . 百度学术
    11. 王辉,陈宇,申自浩,刘沛骞. 结合对比监督和排序树的轨迹数据差分隐私保护方案. 计算机工程与科学. 2023(10): 1797-1805 . 百度学术
    12. 王爱兵. 基于区块链的社区矫正系统数据分布式安全存储方法. 电脑知识与技术. 2023(28): 63-65 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  414
  • HTML全文浏览量:  8
  • PDF下载量:  227
  • 被引次数: 24
出版历程
  • 发布日期:  2021-10-31

目录

    /

    返回文章
    返回