• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于空间变换的随机森林算法

关晓蔷, 王文剑, 庞继芳, 孟银凤

关晓蔷, 王文剑, 庞继芳, 孟银凤. 基于空间变换的随机森林算法[J]. 计算机研究与发展, 2021, 58(11): 2485-2499. DOI: 10.7544/issn1000-1239.2021.20200523
引用本文: 关晓蔷, 王文剑, 庞继芳, 孟银凤. 基于空间变换的随机森林算法[J]. 计算机研究与发展, 2021, 58(11): 2485-2499. DOI: 10.7544/issn1000-1239.2021.20200523
Guan Xiaoqiang, Wang Wenjian, Pang Jifang, Meng Yinfeng. Space Transformation Based Random Forest Algorithm[J]. Journal of Computer Research and Development, 2021, 58(11): 2485-2499. DOI: 10.7544/issn1000-1239.2021.20200523
Citation: Guan Xiaoqiang, Wang Wenjian, Pang Jifang, Meng Yinfeng. Space Transformation Based Random Forest Algorithm[J]. Journal of Computer Research and Development, 2021, 58(11): 2485-2499. DOI: 10.7544/issn1000-1239.2021.20200523
关晓蔷, 王文剑, 庞继芳, 孟银凤. 基于空间变换的随机森林算法[J]. 计算机研究与发展, 2021, 58(11): 2485-2499. CSTR: 32373.14.issn1000-1239.2021.20200523
引用本文: 关晓蔷, 王文剑, 庞继芳, 孟银凤. 基于空间变换的随机森林算法[J]. 计算机研究与发展, 2021, 58(11): 2485-2499. CSTR: 32373.14.issn1000-1239.2021.20200523
Guan Xiaoqiang, Wang Wenjian, Pang Jifang, Meng Yinfeng. Space Transformation Based Random Forest Algorithm[J]. Journal of Computer Research and Development, 2021, 58(11): 2485-2499. CSTR: 32373.14.issn1000-1239.2021.20200523
Citation: Guan Xiaoqiang, Wang Wenjian, Pang Jifang, Meng Yinfeng. Space Transformation Based Random Forest Algorithm[J]. Journal of Computer Research and Development, 2021, 58(11): 2485-2499. CSTR: 32373.14.issn1000-1239.2021.20200523

基于空间变换的随机森林算法

基金项目: 国家自然科学基金项目(61876103,61673249,U1805263,62006148);山西省重点研发计划项目(201903D421050);山西省1331工程项目
详细信息
  • 中图分类号: TP181

Space Transformation Based Random Forest Algorithm

Funds: This work was supported by the National Natural Science Foundation of China (61876103, 61673249, U1805263, 62006148), the Key Research and Development Program of Shanxi Province (201903D421050), and the 1331 Engineering Project of Shanxi Province.
  • 摘要: 随机森林是机器学习领域中一种常用的分类算法,具有适用范围广且不易过拟合等优点.为了提高随机森林处理多分类问题的能力,提出一种基于空间变换的随机森林算法(space transformation based random forest algorithm, ST-RF).首先,给出一种考虑优先类别的线性判别分析方法(priority class based linear discriminant analysis, PCLDA),利用针对优先类别的投影矩阵对样本进行空间变换,以增强优先类别样本与其他类别样本的区分效果.进而,将PCLDA方法引入随机森林构建过程中,在为每棵决策树随机选择一个优先类别保证随机森林多样性的基础上,利用PCLDA方法创建侧重于不同优先类别的决策树,以提高单棵决策树的分类准确性,从而实现集成模型整体分类性能的有效提升.最后,在10个标准数据集上对ST-RF算法与7种典型随机森林算法进行比较分析,验证所提算法的有效性,并将基于PCLDA的空间变换策略应用到对比算法中,对改进前后的算法性能进行比较分析.实验结果表明:ST-RF算法在处理多分类问题方面具有明显优势,所提出的空间变换策略具有较强的普适性,可以显著提升原算法的分类性能.
    Abstract: Random forest is a commonly used classification algorithm in the field of machine learning, which has the advantages of wide application and not easy overfitting. In order to improve the overall performance of random forest in dealing with multi-classification problems, a space transformation based random forest algorithm (ST-RF) is proposed. Firstly, a priority class based linear discriminant analysis (PCLDA) method is designed. On the basis of obtaining the projection matrix for priority class, the discrimination effect between priority class samples and other classes samples is enhanced by spatial transformation. Then, PCLDA method is introduced into the process of random forest construction. By selecting the priority class randomly for each decision tree, the diversity among decision trees in random forests is guaranteed. By using the PCLDA method to create decision trees with different priority classes, the classification accuracy of individual decision tree is improved. Thus, the overall classification performance of the integrated model is effectively improved. By comparing the ST-RF algorithm with seven typical random forest algorithms in 10 standard datasets, the effectiveness of the proposed algorithm is verified. Moreover, the spatial transformation strategy based on PCLDA is applied to the above comparison algorithms, and the performance of the algorithms before and after adding the spatial transformation strategy are compared and analyzed. The experimental results show that ST-RF algorithm has obvious advantages in dealing with multi-classification problems, and the proposed spatial transformation strategy has strong universality, which can significantly improve the classification performance of the original algorithm.
  • 期刊类型引用(11)

    1. 温小乐,林靖杰,高永刚. 基于多源遥感的森林地上碳储量研究进展. 福州大学学报(自然科学版). 2025(02): 144-150 . 百度学术
    2. 裴庆庆,刘慧慧. 基于高斯函数拟合的多维数据三维可视化仿真. 计算机仿真. 2024(01): 206-210 . 百度学术
    3. 周云浩,杨宝杰,刘丹,李海峰,杨鹏飞. 基于随机森林算法的电力工程数据预测分析建模与仿真. 电子设计工程. 2024(04): 103-106+111 . 百度学术
    4. 李浩阳,贺小伟,王宾,吴昊,尤琪. 基于改进Informer的云计算资源负载预测. 计算机工程. 2024(02): 43-50 . 百度学术
    5. 郑瑶,于景晓. 基于节点递归算法的污水排放管道网规划仿真. 计算机仿真. 2024(02): 368-372 . 百度学术
    6. 吕良. 考虑噪声影响的柴油发电机组并联运行自动化监控系统. 自动化与仪表. 2024(03): 7-11 . 百度学术
    7. 徐丹丹,张帝. 基于数据驱动和本体建模的数控机床主轴故障诊断与推理. 机床与液压. 2024(12): 244-252 . 百度学术
    8. 方圆圻,尹凡,葛乃成,侯四维. 基于集群分析和时间序列预测的电网极端自然灾害预警机制优化. 电气自动化. 2024(06): 79-81+85 . 百度学术
    9. 魏亚明,孟媛. 基于随机森林模型的不平衡大数据分类算法. 吉林大学学报(信息科学版). 2023(06): 1079-1085 . 百度学术
    10. 陈建国,李四海. 基于随机森林算法的秦艽龙胆苦苷含量快速检测. 甘肃农业大学学报. 2023(06): 257-264 . 百度学术
    11. 李衍瑞. 随机森林在农业方面的应用. 南方农机. 2022(22): 63-65+87 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  414
  • HTML全文浏览量:  8
  • PDF下载量:  227
  • 被引次数: 25
出版历程
  • 发布日期:  2021-10-31

目录

    /

    返回文章
    返回