Abstract:
Graph convolutional network is a deep learning model for graph structure data, and it has become a very hot approach in the research of recommendation system due to its powerful ability in feature extraction and representation of data. This paper focuses on the rating prediction tasks in recommendation system, and points out two deficiencies of existing graph convolutional network based recommendation models by detailed analysis, including making use of first-order collaborative signals only and ignoring the differences of user opinions. For solving them, an end-to-end enhanced graph convolutional network based collaborative recommendation model is proposed. It adopts an enhanced graph convolutional layer to take full advantage of collaborative signals to learn embeddings of users and items on graph, which aggregates second-order collaborative signals and incorporates the influence of different user opinions. And it also stacks several graph convolutional layers to iteratively refine the embeddings and finally uses a nonlinear multilayer perceptron network to make rating prediction. The experiments on 5 benchmark recommendation datasets show that the proposed model achieves lower prediction errors compared with several state-of-the-art graph convolutional network based recommendation models.