Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing
-
摘要: 数据集中处理的云计算模式提供交互迅速、绿色高效的多样化应用服务面临新挑战.将云计算能力扩展到边缘设备,提出了边云协同计算框架;设计了基于任务预测的资源部署算法,在云服务中心通过二维时间序列对任务进行预测,结合分类聚合、延迟阈值判定等优化边缘服务器任务运行所需资源部署;提出了基于帕累托优化的任务调度算法,在边缘服务器分2个阶段进行帕累托渐进比较得到用户服务质量和系统服务效应2个目标曲线的相切点或任一相交点以优化任务调度.实验结果表明:结合基于任务预测的资源部署算法与基于帕累托优化的任务调度算法在提高平均用户任务命中率基础上,其用户平均服务完成时间、系统整体服务效应度、总任务延迟率在不同用户任务规模、不同Zipf分布参数α的应用场景下,均优于基于帕累托优化的任务调度算法和基于FIFO(first input first output)的基准任务调度算法.Abstract: The cloud computing model of data centralized processing is facing new challenges for providing diversified application services with rapid interaction and green efficiency. In this paper, the cloud computing capability is extended to the edge devices, and an edge cloud collaborative computing framework is proposed. A resource deployment algorithm based on task prediction (RDTP) is designed. The tasks are predicted by two-dimensional time series in cloud service center, and the task resource deployment of edge server is optimized by classification aggregation and delay threshold determination. A task scheduling algorithm based on Pareto improvement (TSPI) is proposed. At the edge servers, the Pareto progressive comparison is conducted in two stages to obtain the tangent point or any intersection point of the two objective curves of quality of user service and effect of system service to optimize task scheduling. The experimental results show that combining the resource deployment algorithm based on task prediction and the task scheduling algorithm based on Pareto improvement (RDTP-TSPI) increases the average user task hit rate. In addition, in the application scenarios of varying user task scales and different Zipf distribution parameters α, the average service completion time of users, the overall service effectiveness of system, and the total task delay rate of RDTP-TSPI are better than the TSPI and BA (benchmark task scheduling algorithm based on FIFO).
-
Keywords:
- task scheduling /
- resource deployment /
- task prediction /
- collaborative computing /
- edge computing
-
-
期刊类型引用(12)
1. 李晓静,杨秀杰. 云计算环境下多模态异构网络数据安全存储方法. 现代电子技术. 2025(06): 63-67 . 百度学术
2. 李林,左天才,杜泽新,谢志奇. 基于LSM树的在线监测数据安全存储系统设计. 电子设计工程. 2024(07): 63-67 . 百度学术
3. 闫丽飞,褚宇宁,赵维伟,何壮壮,刘晓强. 大规模非结构化数据资源快速存储方法研究. 集成电路与嵌入式系统. 2024(04): 77-81 . 百度学术
4. 何博宇,潘洪志. 大数据环境下位置轨迹安全存储系统研究与实现. 电脑知识与技术. 2024(10): 77-80 . 百度学术
5. 巢成,蒲非凡,许建秋,高云君. 基于空间位置关系的轨迹数据高效降维和查询算法. 计算机研究与发展. 2024(07): 1771-1790 . 本站查看
6. 王芳,王建民,邵芬红. 多信道无线通信网络动态数据完整性存储仿真. 计算机仿真. 2024(07): 451-455 . 百度学术
7. 张铠,黄晋,汪希. 基于区块链技术的网络信息安全访问控制方法. 信息技术与信息化. 2024(09): 197-200 . 百度学术
8. 马明扬,杨洪勇,刘飞. 基于强化学习的双人博弈差分隐私保护研究. 复杂系统与复杂性科学. 2024(04): 107-114 . 百度学术
9. 李玉光,郗海龙. 物联网异构数据库分层访问算法仿真. 计算机仿真. 2023(03): 490-493+498 . 百度学术
10. 吕舰. 基于国密算法的网络通信传输数据安全存储方法. 长江信息通信. 2023(04): 171-174 . 百度学术
11. 王辉,陈宇,申自浩,刘沛骞. 结合对比监督和排序树的轨迹数据差分隐私保护方案. 计算机工程与科学. 2023(10): 1797-1805 . 百度学术
12. 王爱兵. 基于区块链的社区矫正系统数据分布式安全存储方法. 电脑知识与技术. 2023(28): 63-65 . 百度学术
其他类型引用(12)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 24