• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

融合上下文信息的篇章级事件时序关系抽取方法

王俊, 史存会, 张瑾, 俞晓明, 刘悦, 程学旗

王俊, 史存会, 张瑾, 俞晓明, 刘悦, 程学旗. 融合上下文信息的篇章级事件时序关系抽取方法[J]. 计算机研究与发展, 2021, 58(11): 2475-2484. DOI: 10.7544/issn1000-1239.2021.20200627
引用本文: 王俊, 史存会, 张瑾, 俞晓明, 刘悦, 程学旗. 融合上下文信息的篇章级事件时序关系抽取方法[J]. 计算机研究与发展, 2021, 58(11): 2475-2484. DOI: 10.7544/issn1000-1239.2021.20200627
Wang Jun, Shi Cunhui, Zhang Jin, Yu Xiaoming, Liu Yue, Cheng Xueqi. Document-Level Event Temporal Relation Extraction with Context Information[J]. Journal of Computer Research and Development, 2021, 58(11): 2475-2484. DOI: 10.7544/issn1000-1239.2021.20200627
Citation: Wang Jun, Shi Cunhui, Zhang Jin, Yu Xiaoming, Liu Yue, Cheng Xueqi. Document-Level Event Temporal Relation Extraction with Context Information[J]. Journal of Computer Research and Development, 2021, 58(11): 2475-2484. DOI: 10.7544/issn1000-1239.2021.20200627
王俊, 史存会, 张瑾, 俞晓明, 刘悦, 程学旗. 融合上下文信息的篇章级事件时序关系抽取方法[J]. 计算机研究与发展, 2021, 58(11): 2475-2484. CSTR: 32373.14.issn1000-1239.2021.20200627
引用本文: 王俊, 史存会, 张瑾, 俞晓明, 刘悦, 程学旗. 融合上下文信息的篇章级事件时序关系抽取方法[J]. 计算机研究与发展, 2021, 58(11): 2475-2484. CSTR: 32373.14.issn1000-1239.2021.20200627
Wang Jun, Shi Cunhui, Zhang Jin, Yu Xiaoming, Liu Yue, Cheng Xueqi. Document-Level Event Temporal Relation Extraction with Context Information[J]. Journal of Computer Research and Development, 2021, 58(11): 2475-2484. CSTR: 32373.14.issn1000-1239.2021.20200627
Citation: Wang Jun, Shi Cunhui, Zhang Jin, Yu Xiaoming, Liu Yue, Cheng Xueqi. Document-Level Event Temporal Relation Extraction with Context Information[J]. Journal of Computer Research and Development, 2021, 58(11): 2475-2484. CSTR: 32373.14.issn1000-1239.2021.20200627

融合上下文信息的篇章级事件时序关系抽取方法

基金项目: 国家自然科学基金面上项目(91746301,61772498);国家重点研发计划项目(29198220,2017YFC0820404)
详细信息
  • 中图分类号: TP391

Document-Level Event Temporal Relation Extraction with Context Information

Funds: This work was supported by the General Program of the National Natural Science Foundation of China (91746301, 61772498) and the National Key Research and Development Program of China (29198220, 2017YFC0820404).
  • 摘要: 事件时序关系抽取是一项重要的自然语言理解任务,可以广泛应用于诸如知识图谱构建、问答系统等任务.已有事件时序关系抽取方法往往将该任务视为句子级事件对的分类问题,而基于有限的局部句子信息导致其抽取的事件时序关系的精度较低,且无法保证整体时序关系的全局一致性.针对此问题,提出一种融合上下文信息的篇章级事件时序关系抽取方法,使用基于双向长短期记忆(bidirectional long short-term memory, Bi-LSTM)的神经网络模型学习文章中事件对的时序关系表示,再利用自注意力机制融入上下文中其他事件对信息,从而得到更丰富的事件对时序关系表示用于时序关系分类.通过TB-Dense(timebank dense)和MATRES(multi-axis temporal relations for start-points)数据集的实验表明:此方法能够取得比当前主流的句子级方法更佳的抽取效果.
    Abstract: Event temporal relation extraction is an important natural language understanding task, which can be widely used in downstream tasks such as construction of knowledge graph, question answering system and narrative generation. Existing event temporal relation extraction methods often treat the task as a sentence-level event pair classification problem, and solve it by some classification model. However, based on limited local sentence information, the accuracy of the extraction of temporal relations among events is low and the global consistency of the temporal relations cannot be guaranteed. For this problem, this paper proposes a document-level event temporal relation extraction with context information, which uses the neural network model based on Bi-LSTM (bidirectional long short-term memory) to learn the temporal relation expressions of event pairs, and then uses the self-attention mechanism to combine the information of other event pairs in the context, to obtain a better event temporal relation expression for temporal relation classification. At last, that event temporal relation expression with context information will improve the global event temporal relation extraction by enhancing temporal relation classification of all event pairs in the document. Experiments on TB-Dense (timebank dense) dataset and MATRES (multi-axis temporal relations for start-points) dataset show that this method can achieve better results than the latest sentence-level methods.
  • 期刊类型引用(12)

    1. 李晓静,杨秀杰. 云计算环境下多模态异构网络数据安全存储方法. 现代电子技术. 2025(06): 63-67 . 百度学术
    2. 李林,左天才,杜泽新,谢志奇. 基于LSM树的在线监测数据安全存储系统设计. 电子设计工程. 2024(07): 63-67 . 百度学术
    3. 闫丽飞,褚宇宁,赵维伟,何壮壮,刘晓强. 大规模非结构化数据资源快速存储方法研究. 集成电路与嵌入式系统. 2024(04): 77-81 . 百度学术
    4. 何博宇,潘洪志. 大数据环境下位置轨迹安全存储系统研究与实现. 电脑知识与技术. 2024(10): 77-80 . 百度学术
    5. 巢成,蒲非凡,许建秋,高云君. 基于空间位置关系的轨迹数据高效降维和查询算法. 计算机研究与发展. 2024(07): 1771-1790 . 本站查看
    6. 王芳,王建民,邵芬红. 多信道无线通信网络动态数据完整性存储仿真. 计算机仿真. 2024(07): 451-455 . 百度学术
    7. 张铠,黄晋,汪希. 基于区块链技术的网络信息安全访问控制方法. 信息技术与信息化. 2024(09): 197-200 . 百度学术
    8. 马明扬,杨洪勇,刘飞. 基于强化学习的双人博弈差分隐私保护研究. 复杂系统与复杂性科学. 2024(04): 107-114 . 百度学术
    9. 李玉光,郗海龙. 物联网异构数据库分层访问算法仿真. 计算机仿真. 2023(03): 490-493+498 . 百度学术
    10. 吕舰. 基于国密算法的网络通信传输数据安全存储方法. 长江信息通信. 2023(04): 171-174 . 百度学术
    11. 王辉,陈宇,申自浩,刘沛骞. 结合对比监督和排序树的轨迹数据差分隐私保护方案. 计算机工程与科学. 2023(10): 1797-1805 . 百度学术
    12. 王爱兵. 基于区块链的社区矫正系统数据分布式安全存储方法. 电脑知识与技术. 2023(28): 63-65 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  675
  • HTML全文浏览量:  5
  • PDF下载量:  409
  • 被引次数: 24
出版历程
  • 发布日期:  2021-10-31

目录

    /

    返回文章
    返回