Research on Document Grounded Conversations
-
摘要: 基于文档的对话是目前对话领域一个新兴的热点任务.与以往的任务不同,其需要将对话信息和文档信息综合进行考虑.然而,先前的工作着重考虑二者之间的关系,却忽略了对话信息中的句子对回复生成的作用具有差异性.针对这一问题,提出了一种新的辩证看待对话历史的方法,在编码阶段讨论利用历史和忽略历史2种情况进行语义信息的建模,并采用辩证整合的方式进行分支信息的汇总.由此避免了在历史信息与当前对话不相关时,其作为噪声被引入进而损害模型性能,同时也强化了当前对话对信息筛选的指导作用.实验结果表明,该模型与现有基线模型相比,能够生成更为符合当前语境且信息量更加丰富的回复,从而说明其能够更好地理解对话信息并进行知识筛选.并且通过进行消融实验,也验证了各模块在建模过程中的有效性.
-
关键词:
- 基于文档的对话 /
- 回复生成 /
- 信息筛选 /
- Transformer模型 /
- 注意力机制
Abstract: Document grounded conversations is an emerging hot task in the field of dialogue system. Different from previous tasks, it needs to consider both the utterances and the given document. However, previous work focused on the relationship between the two, but ignored the utterances’ difference in the effect of response generation. To solve this problem, a new dialectical approach to the dialogue history, which means the utterances before the last one, is proposed in this paper. At the encoding step, it divides the modeling of the semantic information into two parts: using history and ignoring history, and then uses the comparative integration method to summarize the branch results. In this way, when the dialogue history is not related to the current utterance, it can avoid being introduced as noise which will damage the performance of the model. Besides, it also strengthens the guiding role of the current utterance in the information filtering process. Experimental results show that compared with the existing baselines, this model can generate responses that are more in line with the current context and more informative, indicating that it can better understand dialogue information and conduct knowledge filtering. And through the ablation study, the effectiveness of each module in the modeling process is also verified. -
-
期刊类型引用(6)
1. 徐雪峰,郭广伟,黄余. 改进全卷积神经网络的遥感图像小目标检测. 机械设计与制造. 2024(10): 38-42 . 百度学术
2. 刘雯雯,汪皖燕,程树林. 融合项目热门惩罚因子改进协同过滤推荐方法. 计算机技术与发展. 2023(03): 15-19 . 百度学术
3. 冯勇,刘洋,王嵘冰,徐红艳,张永刚. 面向用户需求的生成对抗网络多样性推荐方法. 小型微型计算机系统. 2023(06): 1192-1197 . 百度学术
4. 冯晨娇,宋鹏,张凯涵,梁吉业. 融合社交网络信息的长尾推荐方法. 模式识别与人工智能. 2022(01): 26-36 . 百度学术
5. 韩迪,陈怡君,廖凯,林坤玲. 推荐系统中的准确性、新颖性和多样性的有效耦合与应用. 南京大学学报(自然科学). 2022(04): 604-614 . 百度学术
6. 甘亚男,耿生玲,郝立. 超贝叶斯图模型及其联结树的构建. 青海师范大学学报(自然科学版). 2021(02): 42-48 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 572
- HTML全文浏览量: 5
- PDF下载量: 216
- 被引次数: 15