• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于深度学习的图异常检测技术综述

陈波冯, 李靖东, 卢兴见, 沙朝锋, 王晓玲, 张吉

陈波冯, 李靖东, 卢兴见, 沙朝锋, 王晓玲, 张吉. 基于深度学习的图异常检测技术综述[J]. 计算机研究与发展, 2021, 58(7): 1436-1455. DOI: 10.7544/issn1000-1239.2021.20200685
引用本文: 陈波冯, 李靖东, 卢兴见, 沙朝锋, 王晓玲, 张吉. 基于深度学习的图异常检测技术综述[J]. 计算机研究与发展, 2021, 58(7): 1436-1455. DOI: 10.7544/issn1000-1239.2021.20200685
Chen Bofeng, Li Jingdong, Lu Xingjian, Sha Chaofeng, Wang Xiaoling, Zhang Ji. Survey of Deep Learning Based Graph Anomaly Detection Methods[J]. Journal of Computer Research and Development, 2021, 58(7): 1436-1455. DOI: 10.7544/issn1000-1239.2021.20200685
Citation: Chen Bofeng, Li Jingdong, Lu Xingjian, Sha Chaofeng, Wang Xiaoling, Zhang Ji. Survey of Deep Learning Based Graph Anomaly Detection Methods[J]. Journal of Computer Research and Development, 2021, 58(7): 1436-1455. DOI: 10.7544/issn1000-1239.2021.20200685
陈波冯, 李靖东, 卢兴见, 沙朝锋, 王晓玲, 张吉. 基于深度学习的图异常检测技术综述[J]. 计算机研究与发展, 2021, 58(7): 1436-1455. CSTR: 32373.14.issn1000-1239.2021.20200685
引用本文: 陈波冯, 李靖东, 卢兴见, 沙朝锋, 王晓玲, 张吉. 基于深度学习的图异常检测技术综述[J]. 计算机研究与发展, 2021, 58(7): 1436-1455. CSTR: 32373.14.issn1000-1239.2021.20200685
Chen Bofeng, Li Jingdong, Lu Xingjian, Sha Chaofeng, Wang Xiaoling, Zhang Ji. Survey of Deep Learning Based Graph Anomaly Detection Methods[J]. Journal of Computer Research and Development, 2021, 58(7): 1436-1455. CSTR: 32373.14.issn1000-1239.2021.20200685
Citation: Chen Bofeng, Li Jingdong, Lu Xingjian, Sha Chaofeng, Wang Xiaoling, Zhang Ji. Survey of Deep Learning Based Graph Anomaly Detection Methods[J]. Journal of Computer Research and Development, 2021, 58(7): 1436-1455. CSTR: 32373.14.issn1000-1239.2021.20200685

基于深度学习的图异常检测技术综述

基金项目: 国家自然科学基金项目(61972155);浙江省自然科学基金重点项目(LZ21F030001);之江实验室PI研究项目(111007-PI2001);之江实验室开放课题资助项目(2019KB0AB04)
详细信息
  • 中图分类号: TP391

Survey of Deep Learning Based Graph Anomaly Detection Methods

Funds: This work was supported by the National Natural Science Foundation of China (61972155), the Zhejiang Provincial Natural Science Foundation of China (LZ21F030001), the PI Research Project of Zhejiang Lab (111007-PI2001), and Zhejiang Lab (2019KB0AB04).
  • 摘要: 图异常检测旨在大图或海量图数据库中寻找“陌生”或“不寻常”模式,具有广泛的应用场景.深度学习可以从数据中学习隐含的规律,在提取数据中潜在复杂模式方面表现出优越的性能.近年来随着基于深度神经网络的图表示学习取得显著进展,如何利用深度学习方法进行图异常检测引起了学术界和产业界的广泛关注.尽管最近一系列研究从图的角度对异常检测技术进行了调研,但是缺少对深度学习技术下的图异常检测技术的关注.首先给出了静态图和动态图上各类常见的异常定义,然后调研了基于深度神经网络的图表示学习方法,接着从静态图和动态图的角度出发,梳理了基于深度学习的图异常检测的研究现状,并总结了图异常检测的应用场景和相关数据集,最后讨论了图异常检测技术目前面临的挑战和未来的研究方向.
    Abstract: Graph anomaly detection aims to find “strange” or “unusual” patterns in large graph or massive graph databases, and it has a wide range of application scenarios. Deep learning can learn the hidden rules from the data, and it has excellent performance in extracting potential complex patterns from data. With the great development of graph representation learning in recent years, how to detect graph anomaly using deep learning methods has attracted extensive attention in the area of academia and industry. Although a series of recent studies have investigated anomaly detection methods from the perspective of graphs, there is a lack of attention to graph anomaly detection methods under the background of deep learning. In this paper, we first give the definitions of various kinds of anomalies in static graph and dynamic graph and investigate the deep neural network based graph representation learning method and its various applications in graph anomaly detection. Then we present the current situation of research on graph anomaly detection based on deep learning from the perspective of static graph and dynamic graph, and summarize the application scenarios and related data sets of graph anomaly detection. At last, we discuss the current challenges and future research directions of graph anomaly detection.
  • 期刊类型引用(11)

    1. 袁子轩,张峰,许岗,魏光辉,石永强. 融合MAML和TGAT的机会网络动态链路预测模型. 小型微型计算机系统. 2024(12): 2957-2963 . 百度学术
    2. 曹志威,樊志杰,王青杨,韩伟力,李欣. 一种降噪自编码器的复杂网络链路预测算法. 小型微型计算机系统. 2023(03): 665-672 . 百度学术
    3. 刘林峰,于子兴,祝贺. 基于门控循环单元的移动社会网络链路预测方法. 计算机研究与发展. 2023(03): 705-716 . 本站查看
    4. 王曙燕,巩婧怡. 融合节点标签与强弱关系的链路预测算法. 计算机工程与应用. 2022(18): 71-77 . 百度学术
    5. 张瑾,朱桂祥,王宇琛,郑烁佳,陈镜潞. 基于异质图表达学习的跨境电商推荐模型. 电子与信息学报. 2022(11): 4008-4017 . 百度学术
    6. 唐明虎. 基于多种信息组合模式的非负矩阵分解链路预测模型. 计算机应用研究. 2021(05): 1393-1397+1408 . 百度学术
    7. 顾秋阳,吴宝,池仁勇. 基于高阶路径相似度的复杂网络链路预测方法. 通信学报. 2021(07): 61-69 . 百度学术
    8. 许爽,李淼磊. 基于子图特征的科学家合作网络链路预测. 大连民族大学学报. 2020(01): 51-63 . 百度学术
    9. 张尚田,陈光,邱天. 基于融合特征的LSTM评分预测. 计算机与现代化. 2020(03): 49-53+59 . 百度学术
    10. 顾秋阳,琚春华,吴功兴. 基于子图演化与改进蚁群优化算法的社交网络链路预测方法. 通信学报. 2020(12): 21-35 . 百度学术
    11. 李琦,王智强,梁吉业. 基于PU学习的链接预测方法. 模式识别与人工智能. 2019(09): 793-799 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  2863
  • HTML全文浏览量:  25
  • PDF下载量:  1911
  • 被引次数: 29
出版历程
  • 发布日期:  2021-06-30

目录

    /

    返回文章
    返回