Fairness Research on Deep Learning
-
摘要: 深度学习是机器学习研究中的一个重要领域,它具有强大的特征提取能力,且在许多应用中表现出先进的性能,因此在工业界中被广泛应用.然而,由于训练数据标注和模型设计存在偏见,现有的研究表明深度学习在某些应用中可能会强化人类的偏见和歧视,导致决策过程中的不公平现象产生,从而对个人和社会产生潜在的负面影响.为提高深度学习的应用可靠性、推动其在公平领域的发展,针对已有的研究工作,从数据和模型2方面出发,综述了深度学习应用中的偏见来源、针对不同类型偏见的去偏方法、评估去偏效果的公平性评价指标、以及目前主流的去偏平台,最后总结现有公平性研究领域存在的开放问题以及未来的发展趋势.Abstract: Deep learning is an important field of machine learning research, which is widely used in industry for its powerful feature extraction capabilities and advanced performance in many applications. However, due to the bias in training data labeling and model design, research shows that deep learning may aggravate human bias and discrimination in some applications, which results in unfairness during the decision-making process, thereby will cause negative impact to both individuals and socials. To improve the reliability of deep learning and promote its development in the field of fairness, we review the sources of bias in deep learning, debiasing methods for different types biases, fairness measure metrics for measuring the effect of debiasing, and current popular debiasing platforms, based on the existing research work. In the end we explore the open issues in existing fairness research field and future development trends.
-
Keywords:
- deep learning /
- algorithm fairness /
- debiasing method /
- fairness metric /
- machine learning
-
-
期刊类型引用(20)
1. 肖鸿洲 ,李长云,王志兵 ,甘英华 ,任国鑫 . 一种稀疏体压特征人员识别方法. 现代电子技术. 2025(03): 111-118 . 百度学术
2. 王莹. 未经授权的人脸识别支付法律责任解释论. 运城学院学报. 2024(02): 70-74+89 . 百度学术
3. 洪延青. 人脸识别技术应用的分层治理理论与制度进路. 法律科学(西北政法大学学报). 2024(01): 89-99 . 百度学术
4. 王勇,熊毅,杨天宇,沈益冉. 一种面向耳戴式设备的用户安全连续认证方法. 计算机研究与发展. 2024(11): 2821-2834 . 本站查看
5. 杨光锴. 基于扩散模型的指纹图像生成方法. 河北省科学院学报. 2023(01): 13-18+66 . 百度学术
6. 徐胜超,熊茂华. 基于子模式的人脸局部遮挡智能识别方法. 信息技术. 2023(03): 35-39 . 百度学术
7. 周宇,向剑文,郑倩荣,赵冬冬. 保护用户数量信息的安全虹膜识别方案. 信息安全学报. 2023(03): 49-64 . 百度学术
8. 张星星,钟陈,王文峰,苏立伟. 生物特征识别标准概述. 信息技术与标准化. 2023(11): 64-68 . 百度学术
9. 张雪锋,常振会,张俊杰,王超飞. 指纹和虹膜特征融合的可撤销模板保护方法. 西安邮电大学学报. 2023(04): 51-60 . 百度学术
10. 钟陈,苏立伟,王文峰. 生物特征识别呈现攻击检测标准化研究. 信息技术与标准化. 2022(Z1): 50-53 . 百度学术
11. 张宗华,王晟贤,高楠,孟召宗. 基于曲面类型与深度学习融合的三维掌纹识别技术. 电子与信息学报. 2022(04): 1469-1475 . 百度学术
12. 胡先智,陈浩,梁艳. 多模态生物特征信息安全防护体系研究. 计算机技术与发展. 2022(04): 86-91 . 百度学术
13. 张波,贺楚博. 基于可撤销人脸的模糊保险箱算法研究与实现. 计算机技术与发展. 2022(06): 126-130 . 百度学术
14. 帕孜来提·努尔买提,古丽娜孜·艾力木江,乎西旦·居马洪,朱双玲. 一种基于深度学习方法的面部微变识别的研究. 伊犁师范大学学报(自然科学版). 2022(02): 41-46+52 . 百度学术
15. 杨丽红,尚泽昊. 基于区块链和模糊提取的多特征融合身份认证模型. 数字技术与应用. 2022(08): 218-220 . 百度学术
16. 董芸嘉,张雪锋,姜文. 基于指纹和手指静脉特征融合的模板保护方法. 传感器与微系统. 2022(11): 9-13 . 百度学术
17. 张波,佟玉强. 基于双随机相位编码的多特征人脸模板保护方法. 激光与光电子学进展. 2022(18): 215-222 . 百度学术
18. 王晟贤,张宗华,高楠,孟召宗. 融合曲面类型与迁移学习的三维掌纹识别方法. 传感器与微系统. 2022(12): 118-121 . 百度学术
19. 丁勇,李佳慧,唐士杰,王会勇. 基于随机映射技术的声纹识别模板保护. 计算机研究与发展. 2020(10): 2201-2208 . 本站查看
20. 张佳,王红. 基于生物特征识别的Android身份认证终端技术研究. 电子测试. 2020(24): 78-79+56 . 百度学术
其他类型引用(28)
计量
- 文章访问数: 2135
- HTML全文浏览量: 11
- PDF下载量: 1294
- 被引次数: 48