• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于主题与情感联合预训练的虚假评论检测方法

张东杰, 黄龙涛, 张荣, 薛晖, 林俊宇, 路瑶

张东杰, 黄龙涛, 张荣, 薛晖, 林俊宇, 路瑶. 基于主题与情感联合预训练的虚假评论检测方法[J]. 计算机研究与发展, 2021, 58(7): 1385-1394. DOI: 10.7544/issn1000-1239.2021.20200817
引用本文: 张东杰, 黄龙涛, 张荣, 薛晖, 林俊宇, 路瑶. 基于主题与情感联合预训练的虚假评论检测方法[J]. 计算机研究与发展, 2021, 58(7): 1385-1394. DOI: 10.7544/issn1000-1239.2021.20200817
Zhang Dongjie, Huang Longtao, Zhang Rong, Xue Hui, Lin Junyu, Lu Yao. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model[J]. Journal of Computer Research and Development, 2021, 58(7): 1385-1394. DOI: 10.7544/issn1000-1239.2021.20200817
Citation: Zhang Dongjie, Huang Longtao, Zhang Rong, Xue Hui, Lin Junyu, Lu Yao. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model[J]. Journal of Computer Research and Development, 2021, 58(7): 1385-1394. DOI: 10.7544/issn1000-1239.2021.20200817
张东杰, 黄龙涛, 张荣, 薛晖, 林俊宇, 路瑶. 基于主题与情感联合预训练的虚假评论检测方法[J]. 计算机研究与发展, 2021, 58(7): 1385-1394. CSTR: 32373.14.issn1000-1239.2021.20200817
引用本文: 张东杰, 黄龙涛, 张荣, 薛晖, 林俊宇, 路瑶. 基于主题与情感联合预训练的虚假评论检测方法[J]. 计算机研究与发展, 2021, 58(7): 1385-1394. CSTR: 32373.14.issn1000-1239.2021.20200817
Zhang Dongjie, Huang Longtao, Zhang Rong, Xue Hui, Lin Junyu, Lu Yao. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model[J]. Journal of Computer Research and Development, 2021, 58(7): 1385-1394. CSTR: 32373.14.issn1000-1239.2021.20200817
Citation: Zhang Dongjie, Huang Longtao, Zhang Rong, Xue Hui, Lin Junyu, Lu Yao. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model[J]. Journal of Computer Research and Development, 2021, 58(7): 1385-1394. CSTR: 32373.14.issn1000-1239.2021.20200817

基于主题与情感联合预训练的虚假评论检测方法

基金项目: 廊坊市科技支撑计划项目(2020011005)
详细信息
  • 中图分类号: TP399

Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model

Funds: This work was supported by the Key Technology Research and Development Program of Langfang (2020011005).
  • 摘要: 商品评论信息是用户线上决策的重要依据,但在利益的驱使下商家往往会通过雇佣专业的写手撰写大量虚假评论的方式来误导用户,进而达到包装自己或诋毁竞争对手的目的.这种现象会造成不正当的商业竞争和极差的用户体验.针对这一现象,我们通过情感预训练的方法对现有的虚假评论识别模型进行了改进,并提出了一种能够同时整合评论语义和情感信息的联合预训练学习方法.鉴于预训练模型强大的语义表示能力, 在联合学习框架中采用了2种预训练模型编码器分别用于抽取评论的语义和情感上下文特征,并通过联合训练的方法整合2种特征,最后使用Center Loss损失函数对模型进行优化.在多个公开数据集和多个不同任务上进行了验证实验,实验表明提出的联合模型在虚假评论检测与情感极性分析任务上都取得了目前最好的效果且具有更强的泛化能力.
    Abstract: Product review information is an important basis for users’ online decision-making. However, driven by profit, businesses often hire professional writers to write a large number of fake reviews to mislead users and achieve the purpose of packaging themselves and denigrating competitors, resulting in unfair business competition and extremely poor user experience. In response to this phenomenon, we improved the existing spam review recognition methods through Pre-training Models, and proposed a joint pre-training learning method that can simultaneously integrate the semantic and sentimental information of product reviews. In view of the powerful semantic representation capabilities of the pre-trained model, we apply two pre-trained encoders to extract the semantic and emotional features of reviews in the joint learning framework. We integrate the two types of features through joint pre-training learning method. Apart from that, we add the Center Loss function to optimize the model. We have conducted several verification experiments on multiple public data sets and multiple different tasks. The experiments show that our proposed joint model has achieved the best results and has a stronger generalization in both fake review detection and sentiment analysis tasks.
  • 期刊类型引用(11)

    1. 袁子轩,张峰,许岗,魏光辉,石永强. 融合MAML和TGAT的机会网络动态链路预测模型. 小型微型计算机系统. 2024(12): 2957-2963 . 百度学术
    2. 曹志威,樊志杰,王青杨,韩伟力,李欣. 一种降噪自编码器的复杂网络链路预测算法. 小型微型计算机系统. 2023(03): 665-672 . 百度学术
    3. 刘林峰,于子兴,祝贺. 基于门控循环单元的移动社会网络链路预测方法. 计算机研究与发展. 2023(03): 705-716 . 本站查看
    4. 王曙燕,巩婧怡. 融合节点标签与强弱关系的链路预测算法. 计算机工程与应用. 2022(18): 71-77 . 百度学术
    5. 张瑾,朱桂祥,王宇琛,郑烁佳,陈镜潞. 基于异质图表达学习的跨境电商推荐模型. 电子与信息学报. 2022(11): 4008-4017 . 百度学术
    6. 唐明虎. 基于多种信息组合模式的非负矩阵分解链路预测模型. 计算机应用研究. 2021(05): 1393-1397+1408 . 百度学术
    7. 顾秋阳,吴宝,池仁勇. 基于高阶路径相似度的复杂网络链路预测方法. 通信学报. 2021(07): 61-69 . 百度学术
    8. 许爽,李淼磊. 基于子图特征的科学家合作网络链路预测. 大连民族大学学报. 2020(01): 51-63 . 百度学术
    9. 张尚田,陈光,邱天. 基于融合特征的LSTM评分预测. 计算机与现代化. 2020(03): 49-53+59 . 百度学术
    10. 顾秋阳,琚春华,吴功兴. 基于子图演化与改进蚁群优化算法的社交网络链路预测方法. 通信学报. 2020(12): 21-35 . 百度学术
    11. 李琦,王智强,梁吉业. 基于PU学习的链接预测方法. 模式识别与人工智能. 2019(09): 793-799 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  690
  • HTML全文浏览量:  4
  • PDF下载量:  464
  • 被引次数: 29
出版历程
  • 发布日期:  2021-06-30

目录

    /

    返回文章
    返回