• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

新冠疫情相关社交媒体谣言传播量化分析

陈慧敏, 金思辰, 林微, 朱泽宇, 仝凌波, 刘一芃, 叶奕宁, 姜维翰, 刘知远, 孙茂松, 金兼斌

陈慧敏, 金思辰, 林微, 朱泽宇, 仝凌波, 刘一芃, 叶奕宁, 姜维翰, 刘知远, 孙茂松, 金兼斌. 新冠疫情相关社交媒体谣言传播量化分析[J]. 计算机研究与发展, 2021, 58(7): 1366-1384. DOI: 10.7544/issn1000-1239.2021.20200818
引用本文: 陈慧敏, 金思辰, 林微, 朱泽宇, 仝凌波, 刘一芃, 叶奕宁, 姜维翰, 刘知远, 孙茂松, 金兼斌. 新冠疫情相关社交媒体谣言传播量化分析[J]. 计算机研究与发展, 2021, 58(7): 1366-1384. DOI: 10.7544/issn1000-1239.2021.20200818
Chen Huimin, Jin Sichen, Lin Wei, Zhu Zeyu, Tong Lingbo, Liu Yipeng, Ye Yining, Jiang Weihan, Liu Zhiyuan, Sun Maosong, Jin Jianbin. Quantitative Analysis on the Communication of COVID-19 Related Social Media Rumors[J]. Journal of Computer Research and Development, 2021, 58(7): 1366-1384. DOI: 10.7544/issn1000-1239.2021.20200818
Citation: Chen Huimin, Jin Sichen, Lin Wei, Zhu Zeyu, Tong Lingbo, Liu Yipeng, Ye Yining, Jiang Weihan, Liu Zhiyuan, Sun Maosong, Jin Jianbin. Quantitative Analysis on the Communication of COVID-19 Related Social Media Rumors[J]. Journal of Computer Research and Development, 2021, 58(7): 1366-1384. DOI: 10.7544/issn1000-1239.2021.20200818
陈慧敏, 金思辰, 林微, 朱泽宇, 仝凌波, 刘一芃, 叶奕宁, 姜维翰, 刘知远, 孙茂松, 金兼斌. 新冠疫情相关社交媒体谣言传播量化分析[J]. 计算机研究与发展, 2021, 58(7): 1366-1384. CSTR: 32373.14.issn1000-1239.2021.20200818
引用本文: 陈慧敏, 金思辰, 林微, 朱泽宇, 仝凌波, 刘一芃, 叶奕宁, 姜维翰, 刘知远, 孙茂松, 金兼斌. 新冠疫情相关社交媒体谣言传播量化分析[J]. 计算机研究与发展, 2021, 58(7): 1366-1384. CSTR: 32373.14.issn1000-1239.2021.20200818
Chen Huimin, Jin Sichen, Lin Wei, Zhu Zeyu, Tong Lingbo, Liu Yipeng, Ye Yining, Jiang Weihan, Liu Zhiyuan, Sun Maosong, Jin Jianbin. Quantitative Analysis on the Communication of COVID-19 Related Social Media Rumors[J]. Journal of Computer Research and Development, 2021, 58(7): 1366-1384. CSTR: 32373.14.issn1000-1239.2021.20200818
Citation: Chen Huimin, Jin Sichen, Lin Wei, Zhu Zeyu, Tong Lingbo, Liu Yipeng, Ye Yining, Jiang Weihan, Liu Zhiyuan, Sun Maosong, Jin Jianbin. Quantitative Analysis on the Communication of COVID-19 Related Social Media Rumors[J]. Journal of Computer Research and Development, 2021, 58(7): 1366-1384. CSTR: 32373.14.issn1000-1239.2021.20200818

新冠疫情相关社交媒体谣言传播量化分析

基金项目: 国家社会科学基金项目(13&ZD190)
详细信息
  • 中图分类号: TP391

Quantitative Analysis on the Communication of COVID-19 Related Social Media Rumors

Funds: This work was supported by the National Social Science Foundation of China (13&ZD190).
  • 摘要: 新冠肺炎疫情的爆发伴随着大量的谣言在社交媒体平台传播,对网络秩序和社会稳定产生了不良影响.已有的疫情相关社交媒体谣言传播量化分析研究仅对谣言内容等单一传播要素展开分析,而忽略了构成信息传播的其他基础要素,包括传播者、受众以及传播效果等.同时,这些研究的谣言数据与真实的社交媒体谣言数据也存在分布偏差和信息缺失.因此,基于新浪微博平台对新冠疫情相关社交媒体谣言的传播展开更加全面的量化分析.具体而言,首先对谣言传播内容进行分析,包括其主题分析、涉及地区分析、事件倾向性分析以及情感分析;进一步对谣言参与用户进行分析,将参与用户分为3类:造谣者、传谣者和辟谣者,并分别对其基础属性、关注主题、个体情绪以及自网络属性进行探究;最后对谣言引发舆情进行分析,探究其情感的整体分布、与主题、关键词和地区的关系、以及情感的演变规律.该研究首次从信息传播的各个基础要素层面对疫情相关的社交媒体谣言传播展开量化分析,不仅对新冠肺炎疫情相关谣言传播有了更全面深刻的认识,同时对突发公共事件的谣言研究和谣言治理也具有十分重要的价值.
    Abstract: The outbreak of the COVID-19 pandemic is accompanied by numerous rumors spreading on the social media platform, which seriously affects the stability of society and the safety of public. Existing quantitative analyses of COVID-19 related social media rumors only focus on single element of communication, such as content, while ignoring other basic elements of communication, including communicator, audience, and effect. Besides, compared with the real social media rumor data, the rumor data of these studies have distribution bias and lack of information. Therefore, we conduct a more comprehensive quantitative analysis on the communication of COVID-19 related social media rumors based on the Sina Weibo platform. Specifically, we first analyze the communication content of rumors, including the analysis of the topic, involved regions, event tendency and sentiment. Further, we investigate the users engaged in rumor communication and divide the users into three categories, namely, rumor posters, rumor spreaders, and rumor informers. We explore the basic attributes, topic preferences, individual sentiments, and self-network characteristics of the engaged users. Finally, we study the public opinion triggered by rumors, including the overall sentiment distribution, its correlation with topics, keywords and regions, as well as the evolution of sentiment. To conclude, this study first quantitatively analyzes COVID-19 related social media rumors from the perspective of different basic elements in communication. It provides a more comprehensive and profound understanding of COVID-19 related social media rumors and is of great value for both research and management of rumor in public emergencies.
  • 期刊类型引用(18)

    1. 徐宁,李静秋,王岚君,刘安安. 时序特性引导下的谣言事件检测方法评测. 南京大学学报(自然科学). 2025(01): 71-82 . 百度学术
    2. 崔蒙蒙,刘井平,阮彤,宋雨秋,杜渂. 基于双重多视角表示的目标级隐性情感分类. 计算机工程. 2024(01): 79-90 . 百度学术
    3. 张乐怡,周怡洁,俞定国,闫燕勤. 媒介变迁下的谣言传播研究. 新媒体研究. 2024(14): 12-16 . 百度学术
    4. 王世雄,吴泽政. 基于异质信息网络表征学习的微博虚假信息甄别研究. 情报杂志. 2024(12): 152-160 . 百度学术
    5. 陈雄逸,许力,张欣欣,尤玮婧. 社交网络基于意见领袖的谣言抑制方案. 信息安全研究. 2023(01): 57-65 . 百度学术
    6. 张欣欣 ,许力 ,徐振宇 . 基于网络模体的移动社会网络信息可控传播方法. 电子与信息学报. 2023(02): 635-643 . 百度学术
    7. 杨晓晖,王卫宾. 基于门控图神经网络的谣言检测模型. 燕山大学学报. 2023(01): 73-81 . 百度学术
    8. 孙书魁,范菁,李占稳,曲金帅,路佩东. 人工智能在新型冠状病毒肺炎中的研究综述. 计算机工程与应用. 2023(05): 28-39 . 百度学术
    9. 陈卓敏,王莉,朱小飞,王子康. 基于对抗图增强对比学习的虚假新闻检测. 中文信息学报. 2023(06): 137-146 . 百度学术
    10. 鲁贻锦,吴蕾. 基于大数据驱动技术的媒体风险感知模型研究. 佳木斯大学学报(自然科学版). 2023(06): 52-56 . 百度学术
    11. 许云红,崔乐靖,朱南丽,郑娜娜. 社交媒体用户谣言传播行为的影响因素研究综述. 新媒体研究. 2023(24): 14-17+33 . 百度学术
    12. 龙小农,靳旭鹏. 新冠疫情、信息疫情与政治疫情的互动关系及作用机制. 现代传播(中国传媒大学学报). 2022(02): 66-76 . 百度学术
    13. 杨秀璋,刘建义,任天舒,宋籍文,武帅,姜婧怡,陈登建,周既松,李娜. 基于改进LDA-CNN-BiLSTM模型的社交媒体情感分析研究. 现代计算机. 2022(02): 29-36 . 百度学术
    14. 张放,范琳琅. 公共危机中社交媒体辟谣信息采纳的关键要素探究——基于新冠疫情微博辟谣文本的计算分析. 新闻界. 2022(10): 75-85 . 百度学术
    15. 朱梦蝶,付少雄,郑德俊,李杨. 文献视角下的社交媒体健康谣言研究:特征、传播与治理. 图书情报知识. 2022(05): 131-143 . 百度学术
    16. 肖喜珠,杨闻远,高慧敏,高世奇,郭书恒,路思玲,聂欣政,任书漫,王一民,温馨. “后真相”时代的风险感知与反击:青年社交媒体用户信息行为研究. 新媒体研究. 2022(21): 40-46 . 百度学术
    17. 徐建民,王恺霖,吴树芳. 基于改进D-S证据理论的微博不可信用户识别研究. 数据分析与知识发现. 2022(12): 99-112 . 百度学术
    18. 周晖. 国内外基于社交媒体的社会情绪对比分析. 中华医学图书情报杂志. 2022(12): 65-69 . 百度学术

    其他类型引用(21)

计量
  • 文章访问数:  2016
  • HTML全文浏览量:  40
  • PDF下载量:  836
  • 被引次数: 39
出版历程
  • 发布日期:  2021-06-30

目录

    /

    返回文章
    返回