• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

网络信息生态系统中的虚假信息:检测、缓解与挑战

Amrita Bhattacharjee, 舒凯, 高旻, 刘欢

Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
引用本文: Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
Citation: Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979
引用本文: Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979
Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979
Citation: Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979

网络信息生态系统中的虚假信息:检测、缓解与挑战

详细信息
  • 中图分类号: TP391

Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges

  • 摘要: 随着互联网的迅速发展及网络社会媒体中用户的增加,通过社会媒体发布和传播信息的真实性和质量受到日益广泛的关注.目前大部分公众已习惯从社会媒体平台与互联网获取新闻,甚至是获取受到高度关注的话题(如新冠病毒感染症状)的信息.鉴于网络信息生态系统非常嘈杂,充斥着错误和虚假信息并经常受到恶意媒介的污染,从中识别真实的信息成为一项艰巨任务.对此,研究者们已开始致力于虚假信息检测和减缓虚假信息传播影响方面的工作.讨论了网络信息生态系统中的虚假信息问题,特别是随着新冠病毒大爆发而来的“信息疫情”.随后,简述了虚假信息检测方法,分析了减缓虚假信息影响的方法,并探讨了虚假信息研究中的固有挑战.最后从跨学科角度阐述了检测和减缓虚假信息影响的方法和未来研究展望.
    Abstract: With the rapid increase in access to the internet and the subsequent growth in the population of social media users, the quality of information posted, disseminated, and consumed via these platforms is an issue of growing concern. A large fraction of the common public turn to social media platforms and, in general, the internet for news and even information regarding highly concerning issues such as COVID-19 symptoms and treatments. Given that the online information ecosystem is extremely noisy, fraught with misinformation and disinformation, and often contaminated by malicious agents spreading propaganda, identifying genuine and good quality information from disinformation is a challenging task for humans. In this regard, there is a significant amount of ongoing research in the directions of disinformation detection and mitigation. In this survey, we discuss the online disinformation problem, focusing on the recent ″infodemic″ in the wake of the coronavirus pandemic. We then proceed to discuss the inherent challenges in disinformation research, including data collection, early detection and effective mitigation, fact-checking based approaches, multi-modality approaches, and policy issues and fairness, and elaborate on the interdisciplinary approaches towards the detection and mitigation of disinformation, after a short overview of the various directions explored in computational detection and mitigation efforts.
  • 期刊类型引用(5)

    1. 李萍,王丽丽. 国内多模态技术的研究现状与发展趋势:基于CiteSpace的可视化分析. 智能计算机与应用. 2025(01): 194-202 . 百度学术
    2. 马辉,王瑞琴,杨帅. 一种渐进式增长条件生成对抗网络模型. 电信科学. 2023(06): 105-113 . 百度学术
    3. 涂荣成,毛先领,孔伟杰,蔡成飞,赵文哲,王红法,黄河燕. 基于CLIP生成多事件表示的视频文本检索方法. 计算机研究与发展. 2023(09): 2169-2179 . 本站查看
    4. 孔珊珊. 基于深度学习的机器人舞蹈自动生成研究. 自动化与仪器仪表. 2022(04): 237-240 . 百度学术
    5. 李媛,陈昭炯,叶东毅. 基于参考图语义匹配的花卉线稿工笔效果上色算法. 计算机研究与发展. 2022(06): 1271-1285 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  1171
  • HTML全文浏览量:  14
  • PDF下载量:  834
  • 被引次数: 8
出版历程
  • 发布日期:  2021-06-30

目录

    /

    返回文章
    返回