• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

量子优化算法综述

何键浩, 李绿周

何键浩, 李绿周. 量子优化算法综述[J]. 计算机研究与发展, 2021, 58(9): 1823-1834. DOI: 10.7544/issn1000-1239.2021.20210276
引用本文: 何键浩, 李绿周. 量子优化算法综述[J]. 计算机研究与发展, 2021, 58(9): 1823-1834. DOI: 10.7544/issn1000-1239.2021.20210276
He Jianhao, Li Lüzhou. An Overview of Quantum Optimization[J]. Journal of Computer Research and Development, 2021, 58(9): 1823-1834. DOI: 10.7544/issn1000-1239.2021.20210276
Citation: He Jianhao, Li Lüzhou. An Overview of Quantum Optimization[J]. Journal of Computer Research and Development, 2021, 58(9): 1823-1834. DOI: 10.7544/issn1000-1239.2021.20210276
何键浩, 李绿周. 量子优化算法综述[J]. 计算机研究与发展, 2021, 58(9): 1823-1834. CSTR: 32373.14.issn1000-1239.2021.20210276
引用本文: 何键浩, 李绿周. 量子优化算法综述[J]. 计算机研究与发展, 2021, 58(9): 1823-1834. CSTR: 32373.14.issn1000-1239.2021.20210276
He Jianhao, Li Lüzhou. An Overview of Quantum Optimization[J]. Journal of Computer Research and Development, 2021, 58(9): 1823-1834. CSTR: 32373.14.issn1000-1239.2021.20210276
Citation: He Jianhao, Li Lüzhou. An Overview of Quantum Optimization[J]. Journal of Computer Research and Development, 2021, 58(9): 1823-1834. CSTR: 32373.14.issn1000-1239.2021.20210276

量子优化算法综述

基金项目: 国家自然科学基金项目(61772565);广东省基础与应用基础研究基金项目(2020B1515020050);广东省重点研发项目(2018B030325001)
详细信息
  • 中图分类号: TP3-0; O224

An Overview of Quantum Optimization

Funds: This work was supported by the National Natural Science Foundation of China (61772565), the Basic and Applied Basic Research Foundation of Guangdong Province (2020B1515020050), and the Key Research and Development Project of Guangdong Province (2018B030325001).
  • 摘要: 量子优化是量子计算领域近年来颇受关注的一个研究分支,主要研究如何利用量子计算加速优化问题的求解.根据优化问题的变量是否连续分类梳理量子优化算法,侧重介绍连续变量优化算法.通过对现存工作的调研梳理得到一些观察:1)5~20年前的研究主要集中在离散变量的量子优化技术,近5年的研究则更关注连续变量的量子优化技术;2)量子优化使用的主要基础技术都是10~20年前提出的,在基础技术方面需要进一步革新;3)量子优化算法相比于对应的经典算法通常在理论上有加速优势,既有体现在时间复杂度的加速,也有体现在查询复杂度的加速,但仍然有待更为严格的理论分析;4)优化领域依然存在许多值得量子计算研究人员探索的问题,特别是非凸优化领域,亦即经典计算上认为较难的优化问题.
    Abstract: Quantum optimization has attracted much attention in recent years. It mainly studies how to accelerate the solution of optimization problems with quantum computing. This overview will classify the quantum optimization algorithm according to whether the optimization variable is continuous, and focus on introducing the continuous variable optimization algorithm. Through the investigation of existing work, this article obtains the following observations: 1)The works of discrete variable quantum optimization were distributed five years ago, while the works of continuous variable quantum optimization has attracted more attention in the last five years; 2)The main basic technologies used in quantum optimization were mainly proposed ten to twenty years ago, and basic innovations are needed; 3)In most works of quantum optimization, theoretical acceleration of time complexity or query complexity is achieved, but more rigorous theoretical analysis is still needed; 4)There are still many problems worthy of exploration by quantum computing researchers in the optimization field, especially in the field of non-convex optimization, which is considered to be difficult in classical computing.
  • 期刊类型引用(3)

    1. 孙颖,丁卫平,黄嘉爽,鞠恒荣,李铭,耿宇. RCAR-UNet:基于粗糙通道注意力机制的视网膜血管分割网络. 计算机研究与发展. 2023(04): 947-961 . 本站查看
    2. 张创邦,王青海. 直觉模糊知识粒的分解与合成研究. 计算机与数字工程. 2022(02): 270-275+299 . 百度学术
    3. 朱国成. 基于概率语言术语集中考虑专家权重的决策方法研究. 曲阜师范大学学报(自然科学版). 2021(04): 72-80 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1924
  • HTML全文浏览量:  20
  • PDF下载量:  1121
  • 被引次数: 6
出版历程
  • 发布日期:  2021-08-31

目录

    /

    返回文章
    返回