A Heterogeneous Quantum-Classical Computing System Targeting Noisy Intermediate-Scale Quantum Technology
-
摘要: 量子计算有望加速解决经典计算难以解决的问题,如质因子分解、量子化学模拟等.已有单个量子系统可集成大于50个含噪声的固态量子比特,并在特定的计算任务上超越了经典计算机,标志含噪中尺度量子(noisy intermediate-scale quantum, NISQ)计算时代的到来.随着人们可在单个系统中集成越来越多的量子比特,如何将量子比特与控制硬件、软件开发环境、经典计算资源集成得到完整可用的量子计算系统,是一个有待进一步明确的问题.对比了量子计算与经典计算在控制及执行上的异同,并在此基础上提出了面向NISQ时代的量子-经典异构系统.以一个典型的NISQ算法(迭代相位估计算法)为例,介绍了量子算法从软件描述到硬件执行的整体流程,及与该过程相关的高级程序设计语言、编译器、量子软硬件接口和硬件等.在此基础上,讨论了流程中各个层次在NISQ时代面临的挑战.旨在从工程实现的视角,从宏观层面为读者(尤其是量子计算初学者)介绍量子计算系统,希望可以促进人们对NISQ时代下量子计算系统整体结构的理解,并激发更多相关研究.Abstract: Quantum computers promise to accelerate solving problems that are intractable by classical computers, such as prime factorization and quantum chemistry simulation. It has been demonstrated that a single quantum system can integrate more than fifty noisy solid-state qubits and surpass contemporary classical computers in specific computing tasks, marking the arrival of the noisy intermediate-scale quantum (NISQ) era. As more and more qubits can be integrated into a single system, how to integrate qubits with control hardware, software development environment, and classical computing resources to obtain a complete and usable quantum computing system is a problem that needs to be further clarified. By comparing both the control and execution of quantum and classical computing, this paper proposes a heterogeneous quantum-classical system targeting the NISQ technology. Taking a typical NISQ algorithm (the iterative phase estimation algorithm) as an example, this paper introduces the whole process of executing a quantum algorithm and related software and hardware, including the high-level programming language, compiler, quantum software and hardware interface, and control microarchitecture. On top of it, this paper discusses the challenges confronting each layer in the NISQ era. This paper aims to provide a general introduction of quantum computing systems to readers (especially beginners of quantum computing) from an engineering perspective, hoping to promote people’s understanding of the overall architecture of quantum computing systems in the NISQ era and stimulate more related research.
-
-
期刊类型引用(9)
1. 潘海霞,曹宁. 面向无线网络的数据传输自适应拥塞控制. 自动化与仪器仪表. 2024(01): 75-78+84 . 百度学术
2. 江宝英,廖锋. 基于云计算的多媒体网络数据传输拥塞控制方法. 长江信息通信. 2024(11): 96-98 . 百度学术
3. 吴欣. 基于流媒体技术的医学档案信息资源数字化传输. 微型电脑应用. 2023(08): 213-216 . 百度学术
4. 朱振伸,范黎林,赵敬云. 多媒体网络中基于QoS的自适应SPC仿真. 计算机仿真. 2022(01): 213-217 . 百度学术
5. 范洁,谢鑫,陈战胜. 关键姿态映射下视频动态帧目标定位方法. 计算机仿真. 2022(03): 156-159+248 . 百度学术
6. 王健,王仲宇,朱文凯,孙洁茹,潘瑞娟,陈晓宁. 基于可穿戴设备的无线组网输液监控系统. 传感器与微系统. 2022(06): 106-108+113 . 百度学术
7. 廖彬彬,张广兴,刁祖龙,谢高岗. 基于深度强化学习的MPTCP动态编码调度系统. 高技术通讯. 2022(07): 727-736 . 百度学术
8. 刘伟,张涛. 移动边缘计算中基于视频内容协作分发的联合激励机制. 计算机应用研究. 2021(09): 2803-2810 . 百度学术
9. 肖巍,卢劲伉,李博深,吴启槊,白英东,潘超. Faster RCNN优化实时人数流量检测. 长春工业大学学报. 2020(04): 369-374 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 555
- HTML全文浏览量: 2
- PDF下载量: 370
- 被引次数: 14