Study of Wechat Sybil Detection
-
摘要: 社交网络是一个有效的信息传播平台,使得人们的生活更加便捷.同时,在线社交网络也不断提高了社交网络账号的价值.然而,为了获取非法利益,犯罪团伙会利用社交网络平台隐秘地开展各种诈骗、赌博等犯罪活动.为了保护用户的社交安全,各种基于用户行为、关系传播的恶意账号检测方法被提出.此类方法需要积累足够的用户数据才能进行恶意检测,利用这个时间差,犯罪团伙可以开展大量的犯罪活动.首先系统分析了现有恶意账号检测工作.为克服现有方法的缺点而更快地检测恶意账号,设计了一种基于账号注册属性的恶意账号检测方法.方法首先通过分析恶意账号和正常账号在不同属性值上的分布,设计并提取了账号的相似性特征和异常特征;然后基于此计算两两账号的相似度构图以聚类挖掘恶意注册团体,从而有效实现注册阶段的恶意账号检测.Abstract: Online social networks (OSNs) are efficient platforms for information dissemination and facilitate our daily life. The value of OSN accounts increases with the popularity of OSNs. In order to obtain profits illegally, attackers leverage OSNs to construct various attacks such as fraud and gambling. A number of solutions have been proposed to protect users’ security, which mainly focuses on detecting malicious accounts (or Sybils) by analyzing user behavior or the propagation of user relations. Unfortunately, it usually takes much time to collect enough data to perform malicious account detection. Attackers can perform different kinds of attacks during the data collection phase. To detect Sybils efficiently, we propose a new approach that leverages account registration attributes to detect Sybils. First, we analyze the existing detection methods in sybil detection. Then, we analyze the registration data of WeChat. We analyze and compare the distribution of Sybils and benign accounts in different registration attributes, and find that Sybils are prone to cluster with some registration attributes. According to these statistics, we extract two kinds of features from different attributes, i.e., synchronization-based features and anomaly-based features, and calculate the similarity of two accounts based on those features. The accounts that have high similarity are more likely to be malicious. Finally, we build a graph upon accounts having a high similarity to cluster malicious users. We calculate a malicious score for each user to infer whether it is a Sybil. We prototype our approach, and the experimental results with real WeChat show that our approach can achieve 96% precision and 60% recall.
-
-
期刊类型引用(12)
1. 李晓静,杨秀杰. 云计算环境下多模态异构网络数据安全存储方法. 现代电子技术. 2025(06): 63-67 . 百度学术
2. 李林,左天才,杜泽新,谢志奇. 基于LSM树的在线监测数据安全存储系统设计. 电子设计工程. 2024(07): 63-67 . 百度学术
3. 闫丽飞,褚宇宁,赵维伟,何壮壮,刘晓强. 大规模非结构化数据资源快速存储方法研究. 集成电路与嵌入式系统. 2024(04): 77-81 . 百度学术
4. 何博宇,潘洪志. 大数据环境下位置轨迹安全存储系统研究与实现. 电脑知识与技术. 2024(10): 77-80 . 百度学术
5. 巢成,蒲非凡,许建秋,高云君. 基于空间位置关系的轨迹数据高效降维和查询算法. 计算机研究与发展. 2024(07): 1771-1790 . 本站查看
6. 王芳,王建民,邵芬红. 多信道无线通信网络动态数据完整性存储仿真. 计算机仿真. 2024(07): 451-455 . 百度学术
7. 张铠,黄晋,汪希. 基于区块链技术的网络信息安全访问控制方法. 信息技术与信息化. 2024(09): 197-200 . 百度学术
8. 马明扬,杨洪勇,刘飞. 基于强化学习的双人博弈差分隐私保护研究. 复杂系统与复杂性科学. 2024(04): 107-114 . 百度学术
9. 李玉光,郗海龙. 物联网异构数据库分层访问算法仿真. 计算机仿真. 2023(03): 490-493+498 . 百度学术
10. 吕舰. 基于国密算法的网络通信传输数据安全存储方法. 长江信息通信. 2023(04): 171-174 . 百度学术
11. 王辉,陈宇,申自浩,刘沛骞. 结合对比监督和排序树的轨迹数据差分隐私保护方案. 计算机工程与科学. 2023(10): 1797-1805 . 百度学术
12. 王爱兵. 基于区块链的社区矫正系统数据分布式安全存储方法. 电脑知识与技术. 2023(28): 63-65 . 百度学术
其他类型引用(12)
计量
- 文章访问数: 1243
- HTML全文浏览量: 7
- PDF下载量: 806
- 被引次数: 24