• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于差分隐私的多模式隐藏动态对称可搜索加密方案

赵梓婷, 徐银, 宋祥福, 蒋瀚

赵梓婷, 徐银, 宋祥福, 蒋瀚. 基于差分隐私的多模式隐藏动态对称可搜索加密方案[J]. 计算机研究与发展, 2021, 58(10): 2287-2300. DOI: 10.7544/issn1000-1239.2021.20210614
引用本文: 赵梓婷, 徐银, 宋祥福, 蒋瀚. 基于差分隐私的多模式隐藏动态对称可搜索加密方案[J]. 计算机研究与发展, 2021, 58(10): 2287-2300. DOI: 10.7544/issn1000-1239.2021.20210614
Zhao Ziting, Xu Yin, Song Xiangfu, Jiang Han. A Multi-Pattern Hiding Dynamic Symmetric Searchable Encryption Based on Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(10): 2287-2300. DOI: 10.7544/issn1000-1239.2021.20210614
Citation: Zhao Ziting, Xu Yin, Song Xiangfu, Jiang Han. A Multi-Pattern Hiding Dynamic Symmetric Searchable Encryption Based on Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(10): 2287-2300. DOI: 10.7544/issn1000-1239.2021.20210614
赵梓婷, 徐银, 宋祥福, 蒋瀚. 基于差分隐私的多模式隐藏动态对称可搜索加密方案[J]. 计算机研究与发展, 2021, 58(10): 2287-2300. CSTR: 32373.14.issn1000-1239.2021.20210614
引用本文: 赵梓婷, 徐银, 宋祥福, 蒋瀚. 基于差分隐私的多模式隐藏动态对称可搜索加密方案[J]. 计算机研究与发展, 2021, 58(10): 2287-2300. CSTR: 32373.14.issn1000-1239.2021.20210614
Zhao Ziting, Xu Yin, Song Xiangfu, Jiang Han. A Multi-Pattern Hiding Dynamic Symmetric Searchable Encryption Based on Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(10): 2287-2300. CSTR: 32373.14.issn1000-1239.2021.20210614
Citation: Zhao Ziting, Xu Yin, Song Xiangfu, Jiang Han. A Multi-Pattern Hiding Dynamic Symmetric Searchable Encryption Based on Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(10): 2287-2300. CSTR: 32373.14.issn1000-1239.2021.20210614

基于差分隐私的多模式隐藏动态对称可搜索加密方案

基金项目: 国家自然基金重点项目(61632020);山东省软件工程重点实验室科技创新基地专项(11480004042015)
详细信息
  • 中图分类号: TP391

A Multi-Pattern Hiding Dynamic Symmetric Searchable Encryption Based on Differential Privacy

Funds: This work was supported by the National Natural Science Foundation of China (61632020) and the Special Project of Science and Technology Innovation Base of Key Laboratory of Software Engineering of Shandong Province (11480004042015).
  • 摘要: 动态对称可搜索加密(dynamic symmetric searchable encryption, DSSE)在近年来已经成为数据隐私保护方面至关重要的原语,它能够允许客户端对保存于云服务器的加密数据执行高效的检索和更新操作,而仅向服务器泄露少量经过严格定义的信息,如搜索模式、访问模式、更新模式和容量泄露.然而,越来越多的研究发现,一些强大的敌手能够利用DSSE的泄露执行特定攻击,从而破坏数据和检索的隐私性.以往方案往往利用隐私数据查询,茫然随机存取器和存储补齐等技术来压缩甚至消除泄露信息,这些技术能够提供较好的安全性,但是存在计算、通信和存储复杂度过高的问题,难以实用.为了实现更好的安全和效率平衡,提出想法:首先引入差分隐私这一安全概念,提出了一种新的填充方法-差分隐私填充(differential privacy padding, DPP),在保证安全性的同时降低了存储负载.随后在多服务器模式下提出了一种称为“MDSSE”(multi dynamic searchable symmetric encryption)的动态搜索更新方案,通过对DPP的动态运用实现容量、更新以及搜索模式隐藏,保证了前向安全和后向安全.对于方案的安全性证明,扩展了对于更新历史的定义,提出了适用于方案的差分更新历史DP-Update.实验表明:方案可以抵御泄露滥用攻击,并具有较高的存储与通信效率.
    Abstract: Dynamic Symmetric Searchable Encryption (DSSE) has become one of the most important primitives for data privacy protection in recent years. It allows clients to efficiently retrieve and update encrypted data stored in cloud servers. Only a small amount of strictly defined leakage is disclosed to the server, such as search pattern, access pattern, update pattern, and volume pattern. However, a growing number of studies have found that some powerful adversaries can exploit DSSE leakage to carry out specific attacks that undermine the privacy of data and retrieval. In the past, Private Information Retrieval, Oblivious Random Access Machine and storage padding are often used to compress or even eliminate the leaked information. These technologies can provide better security, but they are difficult to be applied because of the high complexity of computation, communication and storage. In order to achieve a better balance between safety and efficiency, this paper proposes the following ideas: We first introduce a meaningful security concept-differential privacy and propose a new padding method, differential privacy padding(DPP), which can reduce the storage load while ensuring the security. Then a Dynamic search update scheme called “MDSSE” is proposed in the multi-server mode. Through DPP apply to our scheme, volume, update and search pattern hiding are realized. The forward privacy and back privacy security are guaranteed at the same time. For the security proof of the scheme, we extend the definition of update history and propose a differential Update history DP-Update which is suitable for this scheme. Experimental results show that our scheme can resist leakage and abuse attacks, it also provides high storage and communication efficiency.
  • 期刊类型引用(16)

    1. 金兰,陈荆亮. 一种用于异常数据流挖掘的改进Apriori算法研究. 计算机仿真. 2025(01): 480-484 . 百度学术
    2. 张文媛,万宇,周选超,吴晓雪,范越鹏. 基于LSTM方法的医疗设备故障预测模型建立. 计量与测试技术. 2025(04): 140-144 . 百度学术
    3. 鲁江. 基于模糊聚类的网络敏感数据流动态挖掘. 电子设计工程. 2024(09): 152-155+160 . 百度学术
    4. 陈鲜展,沈易成,洪飞扬,石绅. 煤矿掘进工作面瓦斯浓度预测. 工矿自动化. 2024(04): 128-132 . 百度学术
    5. 刘淑娟,韩萌,高智慧,穆栋梁,李昂. 数据流上的约束跨层级高效用项集挖掘. 计算机工程与应用. 2024(13): 287-300 . 百度学术
    6. 郑浩,王鹰. 嵌入式异构物联网敏感数据流动态挖掘研究. 电子设计工程. 2024(15): 12-15+20 . 百度学术
    7. 韩萌,何菲菲,张瑞华,李春鹏,孟凡兴. 生物启发式的模式挖掘方法综述. 计算机工程与应用. 2024(16): 19-33 . 百度学术
    8. 欧阳原野. 基于关联规则挖掘算法的集团型企业业务数据管理系统. 电子设计工程. 2024(22): 47-50+57 . 百度学术
    9. 肖金桐,温晓楠,李亚娟. 基于最大增益的广域网冗余数据迭代消除仿真. 计算机仿真. 2024(10): 371-375 . 百度学术
    10. 单芝慧 ,韩萌 ,韩强 . 基于滑动窗口的数据流高效用模糊项集挖掘. 南京师大学报(自然科学版). 2023(01): 120-129 . 百度学术
    11. 戴美玲. 基于改进模糊聚类的网络敏感数据流动态挖掘研究. 保山学院学报. 2023(02): 44-51 . 百度学术
    12. 单芝慧,韩萌,韩强. 增量数据上的闭合定量高效用项集挖掘算法. 计算机应用. 2023(07): 2049-2056 . 百度学术
    13. 蒋华,李星,王慧娇,韦静海. 基于数据索引结构的跨级高效用项集挖掘算法. 计算机应用. 2023(07): 2200-2208 . 百度学术
    14. 单芝慧,韩萌,韩强. 动态数据上的高效用模式挖掘综述. 计算机应用. 2022(01): 94-108 . 百度学术
    15. 李慕航,韩萌,陈志强,武红鑫,张喜龙. 基于窗口内投影的闭合高效用模式挖掘. 太原理工大学学报. 2022(02): 257-265 . 百度学术
    16. 张妮,韩萌,王乐,李小娟,程浩东. 基于滑动窗口的含负项高效用模式挖掘方法. 郑州大学学报(理学版). 2022(04): 55-63 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  687
  • HTML全文浏览量:  4
  • PDF下载量:  348
  • 被引次数: 20
出版历程
  • 发布日期:  2021-09-30

目录

    /

    返回文章
    返回