• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于混合特征指纹的无线设备身份识别方法

宋宇波, 陈冰, 郑天宇, 陈宏远, 陈立全, 胡爱群

宋宇波, 陈冰, 郑天宇, 陈宏远, 陈立全, 胡爱群. 基于混合特征指纹的无线设备身份识别方法[J]. 计算机研究与发展, 2021, 58(11): 2374-2399. DOI: 10.7544/issn1000-1239.2021.20210676
引用本文: 宋宇波, 陈冰, 郑天宇, 陈宏远, 陈立全, 胡爱群. 基于混合特征指纹的无线设备身份识别方法[J]. 计算机研究与发展, 2021, 58(11): 2374-2399. DOI: 10.7544/issn1000-1239.2021.20210676
Song Yubo, Chen Bing, Zheng Tianyu, Chen Hongyuan, Chen Liquan, Hu Aiqun. Hybrid Feature Fingerprint-Based Wireless Device Identification[J]. Journal of Computer Research and Development, 2021, 58(11): 2374-2399. DOI: 10.7544/issn1000-1239.2021.20210676
Citation: Song Yubo, Chen Bing, Zheng Tianyu, Chen Hongyuan, Chen Liquan, Hu Aiqun. Hybrid Feature Fingerprint-Based Wireless Device Identification[J]. Journal of Computer Research and Development, 2021, 58(11): 2374-2399. DOI: 10.7544/issn1000-1239.2021.20210676
宋宇波, 陈冰, 郑天宇, 陈宏远, 陈立全, 胡爱群. 基于混合特征指纹的无线设备身份识别方法[J]. 计算机研究与发展, 2021, 58(11): 2374-2399. CSTR: 32373.14.issn1000-1239.2021.20210676
引用本文: 宋宇波, 陈冰, 郑天宇, 陈宏远, 陈立全, 胡爱群. 基于混合特征指纹的无线设备身份识别方法[J]. 计算机研究与发展, 2021, 58(11): 2374-2399. CSTR: 32373.14.issn1000-1239.2021.20210676
Song Yubo, Chen Bing, Zheng Tianyu, Chen Hongyuan, Chen Liquan, Hu Aiqun. Hybrid Feature Fingerprint-Based Wireless Device Identification[J]. Journal of Computer Research and Development, 2021, 58(11): 2374-2399. CSTR: 32373.14.issn1000-1239.2021.20210676
Citation: Song Yubo, Chen Bing, Zheng Tianyu, Chen Hongyuan, Chen Liquan, Hu Aiqun. Hybrid Feature Fingerprint-Based Wireless Device Identification[J]. Journal of Computer Research and Development, 2021, 58(11): 2374-2399. CSTR: 32373.14.issn1000-1239.2021.20210676

基于混合特征指纹的无线设备身份识别方法

基金项目: 国家重点研发计划项目(2020YFE0200600)
详细信息
  • 中图分类号: TP309

Hybrid Feature Fingerprint-Based Wireless Device Identification

Funds: This work was supported by the National Key Research and Development Program of China (2020YFE0200600).
  • 摘要: 无线网络利用开放性的无线信道传输数据,因此容易遭受设备假冒攻击和通信数据伪造攻击,而防范此类攻击需要精准的设备识别.基于信道状态信息(channel state information, CSI)指纹的设备识别技术利用无线信道特征来识别设备.由于CSI提供细粒度的信道特征,并且可以从OFDM无线设备中轻松获取,因此该技术受到广泛的关注.但是反映无线信道特征的CSI指纹会随着终端的位置和所处环境的改变而改变,并且现有技术通常将机器学习用于指纹匹配以追求高识别准确率,随之而来的高计算复杂度使其无法在计算能力有限的嵌入式设备中实现.针对上述问题,提出了一种基于混合特征指纹的设备身份识别方法,包含终端接入时和通信时的设备识别.在接入时,引入了与终端外界因素无关的数据包到达时间间隔分布(packet arrival interval distribution, PAID)指纹进行识别,以弥补CSI指纹的缺陷;在通信时,借助CSI可以逐包获取的特点,从每个报文中提取CSI指纹并进行实时识别.同时,提出了一种计算复杂度较低的指纹匹配方案,以保证在计算能力有限的设备中也能快速且准确地识别终端.在树莓派上实现了设备识别原型系统并开展了实验,实验表明:该系统在接入时和通信时的识别准确率最高可达98.17%和98.7%,通信时单个数据包的识别时间仅需0.142ms.
    Abstract: Wireless networks transmit data over open wireless channels, so they are vulnerable to impersonation attacks and information forgery attacks. To prevent such attacks, accurate device identification is required. The device identification technology based on channel state information (CSI) fingerprinting uses the wireless channel characteristics of device for identification. Since CSI can provide fine-grained channel characteristics and can be easily obtained from OFDM wireless devices, this technology has received wide attention. However, since CSI fingerprints identify the wireless channel characteristics of device, they change with the location or the environment of device. What’s more, the existing technologies usually use machine learning for fingerprint matching for increasing identification accuracy, but the computational complexity of fingerprint matching increases, which in turn cannot be implemented in embedded devices with limited computational ability. To address these problems, this paper proposes a hybrid feature fingerprint-based device identification scheme, which includes the identification in access stage and communication stage. Packet arrival interval distribution (PAID) fingerprint, which is independent of device’s location, is introduced for identification in access stage to compensate for the shortcomings of the CSI fingerprint. In communication stage, CSI fingerprints are extracted from each data packet and identified in real time with the feature that CSI can be acquired packet by packet. In addition, this paper proposes a fingerprint matching scheme with low computational complexity to ensure fast and accurate device identification even in devices with limited computational ability. We implement the identification system on Raspberry Pi and perform some experiments, which show that the identification accuracy is up to 98.17% and 98.7% in access stage and communication stage, and the identification time of a single packet in communication stage is only 0.142ms.
  • 期刊类型引用(12)

    1. 李晓静,杨秀杰. 云计算环境下多模态异构网络数据安全存储方法. 现代电子技术. 2025(06): 63-67 . 百度学术
    2. 李林,左天才,杜泽新,谢志奇. 基于LSM树的在线监测数据安全存储系统设计. 电子设计工程. 2024(07): 63-67 . 百度学术
    3. 闫丽飞,褚宇宁,赵维伟,何壮壮,刘晓强. 大规模非结构化数据资源快速存储方法研究. 集成电路与嵌入式系统. 2024(04): 77-81 . 百度学术
    4. 何博宇,潘洪志. 大数据环境下位置轨迹安全存储系统研究与实现. 电脑知识与技术. 2024(10): 77-80 . 百度学术
    5. 巢成,蒲非凡,许建秋,高云君. 基于空间位置关系的轨迹数据高效降维和查询算法. 计算机研究与发展. 2024(07): 1771-1790 . 本站查看
    6. 王芳,王建民,邵芬红. 多信道无线通信网络动态数据完整性存储仿真. 计算机仿真. 2024(07): 451-455 . 百度学术
    7. 张铠,黄晋,汪希. 基于区块链技术的网络信息安全访问控制方法. 信息技术与信息化. 2024(09): 197-200 . 百度学术
    8. 马明扬,杨洪勇,刘飞. 基于强化学习的双人博弈差分隐私保护研究. 复杂系统与复杂性科学. 2024(04): 107-114 . 百度学术
    9. 李玉光,郗海龙. 物联网异构数据库分层访问算法仿真. 计算机仿真. 2023(03): 490-493+498 . 百度学术
    10. 吕舰. 基于国密算法的网络通信传输数据安全存储方法. 长江信息通信. 2023(04): 171-174 . 百度学术
    11. 王辉,陈宇,申自浩,刘沛骞. 结合对比监督和排序树的轨迹数据差分隐私保护方案. 计算机工程与科学. 2023(10): 1797-1805 . 百度学术
    12. 王爱兵. 基于区块链的社区矫正系统数据分布式安全存储方法. 电脑知识与技术. 2023(28): 63-65 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 24
出版历程
  • 发布日期:  2021-10-31

目录

    /

    返回文章
    返回